PGFPlots Gallery
The following graphics have been generated with the LaTeX Packages PGFPlots and PGFPlotsTable.
They have been extracted from the reference manuals.
PGFPlots Home
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	xmin=-3,   xmax=3,
	ymin=-3,   ymax=3,
	extra x ticks={-1,1},
	extra y ticks={-2,2},
	extra tick style={grid=major},
]
	\draw[red] \pgfextra{
	  \pgfpathellipse{\pgfplotspointaxisxy{0}{0}}
		{\pgfplotspointaxisdirectionxy{1}{0}}
		{\pgfplotspointaxisdirectionxy{0}{2}}
	  % see also the documentation of 
	  % 'axis direction cs' which
	  % allows a simpler way to draw this ellipse
	};
	\draw[blue] \pgfextra{
	  \pgfpathellipse{\pgfplotspointaxisxy{0}{0}}
		{\pgfplotspointaxisdirectionxy{1}{1}}
		{\pgfplotspointaxisdirectionxy{0}{2}}
	};
	\addplot [only marks,mark=*] coordinates { (0,0) };
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		xlabel=Cost,
		ylabel=Error]
	\addplot[color=red,mark=x] coordinates {
		(2,-2.8559703)
		(3,-3.5301677)
		(4,-4.3050655)
		(5,-5.1413136)
		(6,-6.0322865)
		(7,-6.9675052)
		(8,-7.9377747)
	};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		xlabel=$x$,
		ylabel={$f(x) = x^2 - x +4$}
	]
	% use TeX as calculator:
	\addplot {x^2 - x +4};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		xlabel=$x$,
		ylabel=$\sin(x)$
	]
	% invoke external gnuplot as
	% calculator:
	\addplot gnuplot[id=sin]{sin(x)};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		height=9cm,
		width=9cm,
		grid=major,
	]
		
	\addplot {-x^5 - 242};
	\addlegendentry{model}
	\addplot coordinates {
		(-4.77778,2027.60977)
		(-3.55556,347.84069)
		(-2.33333,22.58953)
		(-1.11111,-493.50066)
		(0.11111,46.66082)
		(1.33333,-205.56286)
		(2.55556,-341.40638)
		(3.77778,-1169.24780)
		(5.00000,-3269.56775)
	};
	\addlegendentry{estimate}
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{loglogaxis}[xlabel=Cost,ylabel=Gain]
\addplot[color=red,mark=x] coordinates {
	(10,100)
	(20,150)
	(40,225)
	(80,340)
	(160,510)
	(320,765)
	(640,1150)
};
\end{loglogaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{loglogaxis}[
	xlabel=Cost,
	ylabel=Error]
\addplot[color=red,mark=x] coordinates {
	(5,    8.31160034e-02)
	(17,   2.54685628e-02)
	(49,   7.40715288e-03)
	(129,  2.10192154e-03)
	(321,  5.87352989e-04)
	(769,  1.62269942e-04)
	(1793, 4.44248889e-05)
	(4097, 1.20714122e-05)
	(9217, 3.26101452e-06)
};
\addplot[color=blue,mark=*] 
	table[x=Cost,y=Error] {pgfplots.testtable};
\legend{Case 1,Case 2}
\end{loglogaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{semilogyaxis}[
		xlabel=Index,ylabel=Value]
	\addplot[color=blue,mark=*] coordinates {
		(1,8)
		(2,16)
		(3,32)
		(4,64)
		(5,128)
		(6,256)
		(7,512)
	};
	\end{semilogyaxis}%
\end{tikzpicture}%
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{loglogaxis}[
	xlabel={Degrees of freedom},
	ylabel={$L_2$ Error}
]
\addplot coordinates {
	(5,8.312e-02)    (17,2.547e-02)   (49,7.407e-03)
	(129,2.102e-03)  (321,5.874e-04)  (769,1.623e-04)
	(1793,4.442e-05) (4097,1.207e-05) (9217,3.261e-06)
};
\addplot coordinates{
	(7,8.472e-02)    (31,3.044e-02)    (111,1.022e-02)
	(351,3.303e-03)  (1023,1.039e-03)  (2815,3.196e-04)
	(7423,9.658e-05) (18943,2.873e-05) (47103,8.437e-06)
};
\addplot coordinates{
	(9,7.881e-02)     (49,3.243e-02)    (209,1.232e-02)
	(769,4.454e-03)   (2561,1.551e-03)  (7937,5.236e-04)
	(23297,1.723e-04) (65537,5.545e-05) (178177,1.751e-05)
};
\addplot coordinates{
	(11,6.887e-02)    (71,3.177e-02)     (351,1.341e-02)
	(1471,5.334e-03)  (5503,2.027e-03)   (18943,7.415e-04)
	(61183,2.628e-04) (187903,9.063e-05) (553983,3.053e-05)
};
\addplot coordinates{
	(13,5.755e-02)     (97,2.925e-02)     (545,1.351e-02)
	(2561,5.842e-03)   (10625,2.397e-03)  (40193,9.414e-04)
	(141569,3.564e-04) (471041,1.308e-04) (1496065,4.670e-05)
};
\legend{$d=2$,$d=3$,$d=4$,$d=5$,$d=6$}
\end{loglogaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{loglogaxis}[clickable coords=
		{Level \thisrow{level} (q=\thisrow{q})}]
	\addplot table[x=dof,y=error] {
level  dof     error           q      
1      4       2.50000000e-01  48        
2      16      6.25000000e-02  25        
3      64      1.56250000e-02  41        
4      256     3.90625000e-03  8         
5      1024    9.76562500e-04  22        
6      4096    2.44140625e-04  46        
7      16384   6.10351562e-05  40        
8      65536   1.52587891e-05  3
9      262144  3.81469727e-06  1
10     1048576 9.53674316e-07  9
	};
		
	\end{loglogaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[%
	clickable coords={(xy): \thisrow{label}},%
	scatter/classes={%
		a={mark=square*,blue},%
		b={mark=triangle*,red},%
		c={mark=o,draw=black}}]
	\addplot[scatter,only marks,%
		scatter src=explicit symbolic]%
	table[meta=label] {
x     y      label
0.1   0.15   a 
0.45  0.27   c 
0.02  0.17   a 
0.06  0.1    a 
0.9   0.5    b 
0.5   0.3    c 
0.85  0.52   b 
0.12  0.05   a 
0.73  0.45   b 
0.53  0.25   c 
0.76  0.5    b 
0.55  0.32   c
	};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{loglogaxis}[clickable coords code={%
	\pgfmathprintnumberto[verbatim,precision=1]%
		{\thisrow{error}}%
		\error%
	\pgfmathprintnumberto[verbatim,frac]%
		{\thisrow{frac}}%
		\fraccomp%
	\edef\pgfplotsretval{error \error, R=\fraccomp}%
}]%
\addplot table[x=dof,y=error] {
level  dof     error           frac      
1      4       2.50000000e-01  0.5        
2      16      6.25000000e-02  0.75      
3      64      1.56250000e-02  0.1        
4      256     3.90625000e-03  0.2         
5      1024    9.76562500e-04  0.5        
6      4096    2.44140625e-04  0.8        
7      16384   6.10351562e-05  0.125        
8      65536   1.52587891e-05  0.725
9      262144  3.81469727e-06  0.625
10     1048576 9.53674316e-07  1
};
	
\end{loglogaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	% Example using groupplots library
\begin{tikzpicture}
  \begin{groupplot}[group style={group size=2 by 2},height=3cm,width=3cm]
    \nextgroupplot
    \addplot coordinates {(0,0) (1,1) (2,2)};
    \nextgroupplot
    \addplot coordinates {(0,2) (1,1) (2,0)};
    \nextgroupplot
    \addplot coordinates {(0,2) (1,1) (2,1)};
    \nextgroupplot
    \addplot coordinates {(0,2) (1,1) (1,0)};      
  \end{groupplot}
\end{tikzpicture}
% Same example created as done without the library
\begin{tikzpicture}
  \begin{axis}[name=plot1,height=3cm,width=3cm]
    \addplot coordinates {(0,0) (1,1) (2,2)};
  \end{axis}
  \begin{axis}[name=plot2,at={($(plot1.east)+(1cm,0)$)},anchor=west,height=3cm,width=3cm]
    \addplot coordinates {(0,2) (1,1) (2,0)};
  \end{axis}
  \begin{axis}[name=plot3,at={($(plot1.south)-(0,1cm)$)},anchor=north,height=3cm,width=3cm]
    \addplot coordinates {(0,2) (1,1) (2,1)};
  \end{axis}
  \begin{axis}[name=plot4,at={($(plot2.south)-(0,1cm)$)},anchor=north,height=3cm,width=3cm]
    \addplot coordinates {(0,2) (1,1) (1,0)};
  \end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
  \begin{groupplot}[group style={group size=3 by 1},xmin=0,ymin=0,height=4cm,width=5cm,no markers]
    \nextgroupplot
    \addplot[very thick] file {plotdata/group-1.dat};
    \draw[red,dashed,thick] (axis cs:0,0) rectangle (axis cs:5,30);
    \nextgroupplot[xmax=5,ymax=30]
    \addplot[very thick] file {plotdata/group-1.dat};
    \draw[red,dashed,thick] (axis cs:3,10) rectangle (axis cs:5,25);
    \nextgroupplot[xmin=3,xmax=5,ymin=10,ymax=25]
    \addplot[very thick] file {plotdata/group-1.dat};
  \end{groupplot}
  \draw[thick,blue,->,shorten >=2pt,shorten <=2pt] 
  		(group c1r1.east) -- (group c2r1.west);
  \draw[thick,blue,->,shorten >=2pt,shorten <=2pt] 
  		(group c2r1.east) -- (group c3r1.west);
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[nodes near coords={(\coordindex)},
	title={\texttt{patch type=quadratic spline}}]
\addplot[
	mark=*,
	patch,mesh,% without mesh, pgfplots tries to fill
	patch type=quadratic spline]
coordinates {
	% left, right, middle-> first segment
	(0,0) (1,1) (0.5,0.5^2)
	% left, right, middle-> second segment
	(1.2,1) (2.2,1) (1.7,2)
};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[nodes near coords={(\coordindex)},
	title={\texttt{patch type=cubic spline}}]
\addplot[
	mark=*,
	patch,mesh,
	patch type=cubic spline]
coordinates {
	% left, right, left middle, right middle
	(-1,-1) 
	(1,1)  
	(-1/3,{(-1/3)^3})
	(1/3,{(1/3)^3})
};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[nodes near coords={(\coordindex)},
	title=Rectangle from matrix input]
% note that surf implies 'patch type=rectangle'
\addplot3[surf,shader=interp,samples=2,
	patch type=rectangle] 
	{x*y};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[nodes near coords={(\coordindex)},
	title=Rectangle from patch input]
\addplot3[patch,shader=interp,patch type=rectangle] coordinates {
	(0,0,1) (1,0,0) (1,1,0) (0,1,0)
};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[nodes near coords={(\coordindex)},
	title=Bilinear from $2\times 2$ matrix input]
% note that surf implies 'patch type=rectangle'
\addplot3[surf,shader=interp,samples=2,
	patch type=bilinear] 
	{x*y};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[nodes near coords={(\coordindex)},
	title=Bilinear from $4$--point patch input]
\addplot3[patch,shader=interp,patch type=bilinear] 
coordinates {
	(0,0,1) (1,0,0) (1,1,0) (0,1,0)
};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[enlargelimits,
	nodes near coords={(\coordindex)},
	title=Single Triangle patch]
\addplot3[patch,shader=interp] coordinates {
	(0,0,1)
	(1,0,0)
	(1,1,0)
};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[nodes near coords={(\coordindex)},
	title=Quadratic Triangle]
\addplot[patch,patch type=triangle quadr,
	shader=interp,point meta=explicit]
coordinates {
	(0,0) [1] (5,4) [2] (0,7) [3]
	(2,3) [1] (3,6) [2] (-1,4)  [3]
};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[nodes near coords={(\coordindex)},
	title=Quadratic Triangle]
\addplot3[patch,patch type=triangle quadr,
	shader=interp]
coordinates {
	(0,0,1) (5,4,0) (0,7,0)
	(2,3,0) (3,6,0) (-1,4,0)
};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[nodes near coords={(\coordindex)},
	title=Single Biquadratic Quadrilateral]
\addplot[patch,patch type=biquadratic,
	shader=interp,point meta=explicit]
coordinates {
	(0,0) [1] (6,1) [2] (5,5) [3] (-1,5) [4]
	(3,1) [1] (6,3) [2] (2,6) [3] (0,3) [4]
	(3,3.75) [4]
};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[nodes near coords={(\coordindex)},
	title=Single Biquadratic Quadrilateral]
\addplot3[patch,patch type=biquadratic,shader=interp]
coordinates {
	(0,0,1) (6,1,0) (5,5,0) (-1,5,0)
	(3,1,0) (6,3,0) (2,6,0) (0,3,0)
	(3,3.75,0)
};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
    \begin{axis}
    \addplot3[patch,patch refines=3,
		shader=faceted interp,
		patch type=biquadratic] 
    table[z expr=x^2-y^2]
    {
        x  y
        -2 -2
        2  -2
        2  2
        -2 2
        0  -2
        2  0
        0  2
        -2 0
        0  0
    };
    \end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[nodes near coords={(\coordindex)},
	width=12cm,
	title=A Coons Patch]
\addplot[mark=*,patch,patch type=coons,
	shader=interp,point meta=explicit] 
coordinates {
	(0,0)   [0] % first corner
	(1,-1)  [0] % Bezier control point between (0) and (3)
	(4,0.7) [0] % Bezier control point between (0) and (3)
	%
	(3,2)   [1] % second corner
	(4,3.5) [1] % Bezier control point between (3) and (6)
	(7,2)   [1] % Bezier control point between (3) and (6)
	%
	(7,1)      [2] % third corner
	(6,0.6)    [2] % Bezier control point between (6) and (9)
	(4.5,-0.5) [2] % Bezier control point between (6) and (9)
	%
	(5,-2)   [3] % fourth corner
	(4,-2.5) [3] % Bezier control point between (9) and (0)
	(-1,-2)  [3] % Bezier control point between (9) and (0)
};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[view/h=120,xlabel=$x$,ylabel=$y$]
	\addplot3[
		opacity=0.5,
		table/row sep=\\,
		patch,
		patch type=polygon,
		vertex count=5,
		patch table with point meta={%
			% pt1 pt2 pt3 pt4 pt5 cdata
			0 1 7 2 2 0\\
			1 6 5 5 5 1\\
			1 5 4 2 7 2\\
			2 4 3 3 3 3\\
	}]
	table {
		x y z\\
		0 2 0\\%0
		2 2 0\\%1
		0 1 3\\%2
		0 0 3\\%3
		1 0 3\\%4
		2 0 2\\%5
		2 0 0\\%6
		1 1 2\\%7
	};
% replicate the vertex list to show \coordindex:
\addplot3[only marks,nodes near coords=\coordindex]
table[row sep=\\] {
0 2 0\\ 2 2 0\\ 0 1 3\\ 0 0 3\\ 
1 0 3\\ 2 0 2\\ 2 0 0\\ 1 1 2\\
};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\foreach \level in {0,1,2} {%
	\begin{tikzpicture}
	\begin{axis}[
		nodes near coords={(\coordindex)},
		footnotesize,
		title={patch refines=\level}]
	\addplot3[patch,patch type=triangle quadr,
		shader=faceted interp,patch refines=\level]
	coordinates {
		(0,0,0) (5,4,0) (0,7,0)
		(2,3,0) (3,6,1) (-1,4,0)
	};
	\end{axis}
	\end{tikzpicture}
}
 
	
		
		[.tex]
		[.pdf]
	
	\foreach \level in {0,1,2} {%
	\begin{tikzpicture}
	\begin{axis}[
		nodes near coords={(\coordindex)},
		footnotesize,
		title={Triangulation + \level\ refines}]
	\addplot3[patch,patch type=biquadratic,shader=faceted interp,
		patch to triangles,patch refines=\level]
	coordinates {
		(0,0,0) (6,1,0) (5,5,0) (-1,5,0)
		(3,1,0) (6,3,0) (2,6,0) (0,3,0)
		(3,3.75,1)
	};
	\end{axis}
	\end{tikzpicture}%
}
 
	
		
		[.tex]
		[.pdf]
	
	\foreach \level in {0,1,2} {%
	\begin{tikzpicture}
	\begin{axis}[
		footnotesize,
		title={Faceted + \level\ refines}]
	\addplot3[patch,patch type=biquadratic,shader=faceted,
		patch refines=\level]
	coordinates {
		(0,0,1) (6,1,0) (5,5,0) (-1,5,0)
		(3,1,0) (6,3,0) (2,6,0) (0,3,0)
		(3,3.75,0)
	};
	\end{axis}
	\end{tikzpicture}
}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	title={Grids with shader=faceted}]
\addplot3[patch,patch type=biquadratic,
	shader=faceted,patch refines=3]
coordinates {
	(0,0,1) (6,1,1.6) (5,5,1.3) (-1,5,0)
	(3,1,0) (6,3,0.4) (2,6,1.1) (0,3,0.9)
	(3,3.75,0.5)
};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	title={Grids with shader=faceted interp}]
\addplot3[patch,patch type=biquadratic,
	shader=faceted interp,patch refines=3]
coordinates {
	(0,0,1) (6,1,1.6) (5,5,1.3) (-1,5,0)
	(3,1,0) (6,3,0.4) (2,6,1.1) (0,3,0.9)
	(3,3.75,0.5)
};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	title={Mesh on top of patches (i): obscured}]
\addplot3[patch,patch type=biquadratic,shader=interp,
	patch refines=3]
coordinates {
	(0,0,1) (6,1,1.6) (5,5,1.3) (-1,5,0)
	(3,1,0) (6,3,0.4) (2,6,1.1) (0,3,0.9)
	(3,3.75,0.5)
};
\addplot3[patch,patch type=biquadratic,mesh,black,
	patch refines=3]
coordinates {
	(0,0,1) (6,1,1.6) (5,5,1.3) (-1,5,0)
	(3,1,0) (6,3,0.4) (2,6,1.1) (0,3,0.9)
	(3,3.75,0.5)
};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	title={Mesh on top of patches (ii): unobscured\\
	  \tiny Geometry provided by Prof. Chernov, Bonn},
	title style={align=center},
	view={156}{28}]
\addplot3[patch,patch type=bilinear,
	shader=interp,
	patch table=plotdata/patchexample_conn.dat] 
	file {plotdata/patchexample_verts.dat};
\addplot3[patch,patch type=bilinear,
	mesh,black,
	patch table=plotdata/patchexample_conn.dat] 
	file {plotdata/patchexample_verts.dat};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	title={Separate Grids (iii)}]
\addplot3[patch,patch type=biquadratic,shader=interp,
	patch refines=3]
coordinates {
	(0,0,1) (6,1,1.6) (5,5,1.3) (-1,5,0)
	(3,1,0) (6,3,0.4) (2,6,1.1) (0,3,0.9)
	(3,3.75,0.5)
};
\addplot3[patch,patch type=biquadratic,
	mesh,black,
	z filter/.code={\def\pgfmathresult{1.8}},
	patch refines=3]
coordinates {
	(0,0,1) (6,1,1.6) (5,5,1.3) (-1,5,0)
	(3,1,0) (6,3,0.4) (2,6,1.1) (0,3,0.9)
	(3,3.75,0.5)
};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{polaraxis}
	\addplot coordinates {(0,1) (90,1) 
		(180,1) (270,1)};
	\end{polaraxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{polaraxis}
	\addplot+[domain=0:3] (360*x,x); % (angle,radius)
	\end{polaraxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{polaraxis}
	\addplot+[mark=none,domain=0:720,samples=600] 
		{sin(2*x)*cos(2*x)}; 
	% equivalent to (x,{sin(..)cos(..)}), i.e.
	% the expression is the RADIUS
	\end{polaraxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{polaraxis}[
		xtick={0,90,180,270},
		title=A polar axis]
	
	\addplot coordinates {(0,1) (45,1)};
	\addlegendentry{First}
	\addplot coordinates {(180,0.5) (0,0)};
	\addlegendentry{Second}
	\end{polaraxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{polaraxis}[title={Degrees and/or Radians}]
	\addplot 
		coordinates {(0,1) (90,1) (180,1) (270,1)};
	\addlegendentry{Deg}
	\addplot+[data cs=polarrad] 
		coordinates {(0,1.5) (pi/2,1.5) 
		  (pi,1.5) (pi*3/2,1.5)};
	\addlegendentry{Rad}
	\end{polaraxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{polaraxis}[title=Cartesian Input]
	\addplot+[data cs=cart]
		coordinates {(1,0) (0,1) (-1,0) (0,-1)};
	\end{polaraxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{polaraxis}
	\addplot3[contour gnuplot,domain=-3:3,
	  data cs=cart]
		{exp(-x^2-y^2)};
	\end{polaraxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{polaraxis}
	\addplot+[polar comb] 
		coordinates {(300,1) (20,0.3) (40,0.5) 
			(120,1) (200,0.4)};
	\end{polaraxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{polaraxis}[xmin=45,xmax=360]
	\addplot coordinates {(0,1) (90,1) (180,1) (270,1)};
	\end{polaraxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{polaraxis}[xmin=90,xmax=270]
	\addplot coordinates {(0,1) (90,1) (180,1) (270,1)};
	\end{polaraxis}
\end{tikzpicture}~%
\begin{tikzpicture}
	\begin{polaraxis}[xmin=270,xmax=420]
	\addplot coordinates {(0,1) (90,1) (180,1) (270,1)};
	\end{polaraxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{polaraxis}[ymin=0.3]
	\addplot coordinates {(0,1) (90,1) 
	  (180,1) (270,1)};
	\end{polaraxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{polaraxis}[xmin=45,xmax=405]
	\addplot coordinates {(0,1) (90,1) (180,1) (270,1)};
	\end{polaraxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{ternaryaxis}
	\addplot3 coordinates {
	    (0.81,	0.19,	0.00)
	    (0.76,	0.17,	0.07)
	    (0.66,	0.16,	0.16)
	    (0.76,	0.07,	0.17)
	    (0.81,	0.00,	0.19)
	};
	\addplot3 coordinates {
	    (0.85,	0.15,	0.00)
	    (0.82,	0.13,	0.05)
	    (0.73,	0.14,	0.13)
	    (0.82,	0.06,	0.13)
	    (0.84,	0.00,	0.16)
	};
	\legend{$10$\textdegree, $20$\textdegree}
\end{ternaryaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{ternaryaxis}[xlabel=A,ylabel=B,zlabel=C]
	\addplot3 coordinates {
        (0.81,  0.19,  0.00)
        (0.76,  0.17,  0.07)
        (0.66,  0.16,  0.16)
        (0.76,  0.07,  0.17)
        (0.81,  0.00,  0.19)
	};
	\addplot3 coordinates {
        (0.85,  0.15,  0.00)
        (0.82,  0.13,  0.05)
        (0.73,  0.14,  0.13)
        (0.82,  0.06,  0.13)
        (0.84,  0.00,  0.16)
	};
	\node[pin=130:Deduced $z$,draw=black] at (axis cs:0.2,0.2) {};
	\legend{$10$\textdegree, $20$\textdegree}
\end{ternaryaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{ternaryaxis}[
	title=Sloped labels and minor ticks,
	xlabel=Water,
	ylabel=D--Threonine,
	zlabel=L--Threonine,
	label style={sloped},
	minor tick num=2,
]
	\addplot3 coordinates {
        (0.82,  0.18,  0.00)
        (0.75,  0.17,  0.08)
        (0.77,  0.12,  0.11)
        (0.75,  0.08,  0.17)
        (0.81,  0.00,  0.19)
	};
	\addplot3 coordinates {
        (0.75,  0.25,  0.00)
        (0.69,  0.25,  0.06)
        (0.64,  0.24,  0.12)
        (0.655, 0.23,  0.115)
        (0.67,  0.17,  0.16)
        (0.66,  0.12,  0.22)
        (0.64,  0.11,  0.25)
        (0.69,  0.05,  0.26)
        (0.76,  0.01,  0.23)
	};
\end{ternaryaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{ternaryaxis}[
	title=Sloped labels and minor grids,
	xlabel=Water,
	ylabel=D--Threonine,
	zlabel=L--Threonine,
	label style={sloped},
	minor tick num=2,
	grid=both,
]
	\addplot3 coordinates {
        (0.82,  0.18,  0.00)
        (0.75,  0.17,  0.08)
        (0.77,  0.12,  0.11)
        (0.75,  0.08,  0.17)
        (0.81,  0.00,  0.19)
	};
	\addplot3 coordinates {
        (0.75,  0.25,  0.00)
        (0.69,  0.25,  0.06)
        (0.64,  0.24,  0.12)
        (0.655, 0.23,  0.115)
        (0.67,  0.17,  0.16)
        (0.66,  0.12,  0.22)
        (0.64,  0.11,  0.25)
        (0.69,  0.05,  0.26)
        (0.76,  0.01,  0.23)
	};
\end{ternaryaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{ternaryaxis}[
	title=Want--be--Stainless Steel,
	xlabel=Weight Percent Chromium,
	ylabel=Weight Percent Iron,
	zlabel=Weight Percent Nickel,
	label style=sloped,
	area style,
]
	\addplot3 table {
	A B C
	1 0 0
	0.5 0.4 0.1
	0.45 0.52 0.03
	0.36 0.6 0.04
	0.1 0.9 0
	};
	\addlegendentry{Cr}
	\addplot3 table {
	A B C
	1 0 0
	0.5 0.4 0.1
	0.28 0.35 0.37
	0.4 0 0.6
	};
	\addlegendentry{Cr+$\gamma$FeNi}
	\addplot3 table {
	0.4 0 0.6
	0.28 0.35 0.37
	0.25 0.6 0.15
	0.1 0.9 0
	0 1 0
	0 0 1
	};
	\addlegendentry{$\gamma$FeNi}
	\addplot3 table {
	0.1 0.9 0
	0.36 0.6 0.04
	0.25 0.6 0.15
	};
	\addlegendentry{Cr+$\gamma$FeNi}
	\addplot3 table {
	0.5 0.4 0.1
	0.45 0.52 0.03
	0.36 0.6 0.04
	0.25 0.6 0.15
	0.28 0.35 0.37
	};
	\addlegendentry{$\sigma$+$\gamma$FeNi}
	\node[inner sep=0.5pt,circle,draw,fill=white,pin=-15:\footnotesize Stainless Steel] 
	  at (axis cs:0.18,0.74,0.08) {};
	
\end{ternaryaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{ternaryaxis}[
	title=Want--be--Stainless Steel,
	xlabel=Weight Percent Chromium,
	ylabel=Weight Percent Iron,
	zlabel=Weight Percent Nickel,
	label style=sloped,
]
% plotdata/pgfplotsternary.example1.dat:
%
% Chromium Iron Nickel Temperature
% 0.90	0.0     0.10	1700
% 0.85	0.14	0.00	1700
%
% 0.85	0.00	0.15	1600
% 0.78	0.22	0.00	1600
% 0.71	0.29	0.00	1600
% ....
\addplot3[contour prepared={labels over line},
		point meta=\thisrow{Temperature}]
	table[x=Chromium,y=Iron,z=Nickel]
	{plotdata/pgfplotsternary.example1.dat};
\end{ternaryaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{ternaryaxis}[
	ternary limits relative,
	title={Data range $[0,1]$, limits relative},
	area style]
\addplot3 coordinates {
	(0.2,0.8,0)
	(0.31,0.4,0.29)
	(0.34,0.2,0.46)
	(0.4,0,0.6)
	(1,0,0)
};
\addplot3 coordinates {
	(0.4,0,0.6)
	(0.34,0.2,0.46)
	(0.31,0.4,0.29)
	(0.14,0.46,0.4)
	(0,0.37,0.63)
	(0,0,1)
};
\node[fill=white] 
	at (axis cs:0.56,0.28,0.16) {$F 42$};
\node[fill=white] 
	at (0.7,0.2) {$F 43$};
\end{ternaryaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{ternaryaxis}[
	xmax=500,ymin=1,ymax=2,
	ternary limits relative,
	title={Data range $x\in[0,500]$, 
		$y\in[1,2]$, $z\in[0,1]$ limits relative},
	area style]
\addplot3 coordinates {
	(100,1.8,0)
	(155,1.4,0.29)
	(170,1.2,0.46)
	(200,1,0.6)
	(500,1,0)
};
\addplot3 coordinates {
	(200,1,0.6)
	(170,1.2,0.46)
	(155,1.4,0.29)
	(70,1.46,0.4)
	(0,1.37,0.63)
	(0,1,1)
};
\node[fill=white] 
	at (axis cs:280,1.28,0.16) {$F 42$};
\node[fill=white] 
	at (0.7,0.2) {$F 43$};
\end{ternaryaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{ternaryaxis}[
	ternary limits relative=false,
	xmax=500,ymin=1,ymax=2,
	title={Data range $x\in[0,500]$, 
		$y\in[1,2]$, $z\in[0,1]$ limits absolute},
	footnotesize, % just for the sake of demonstration...
	area style]
\addplot3 coordinates {
	(100,1.8,0)
	(155,1.4,0.29)
	(170,1.2,0.46)
	(200,1,0.6)
	(500,1,0)
};
\addplot3 coordinates {
	(200,1,0.6)
	(170,1.2,0.46)
	(155,1.4,0.29)
	(70,1.46,0.4)
	(0,1.37,0.63)
	(0,1,1)
};
\node[fill=white] 
	at (axis cs:280,1.28,0.16) {$F 42$};
\node[fill=white] 
	at (0.7,0.2) {$F 43$};
\end{ternaryaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{ternaryaxis}[
		title=Cartesian Annotations,
		clip=false]
	\addplot3 coordinates {
		(0.1,0.5,0.4)
		(0.2,0.5,0.3)
		(0.3,0.6,0.1)
	};
	\node[fill=white,draw] at (0,0) {$y (0,0)$};
	\node[fill=white,draw] at (1,0) {$z (1,0)$};
	\node[fill=white,draw] at (0.5,{sqrt(3)/2}) 
		{$x (\frac12,\frac{\sqrt3}{2})$};
	
	\draw[red,-stealth] (0.5,0) -- (0.5,0.7);
	\end{ternaryaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{ternaryaxis}[
	xlabel=x (IPA),
	ylabel=y (water),
	zlabel=z (propene),
	axis on top,
]
% plotdata/ternary_data.txt is a table of the form
%A_propene A_water A_IPA  B_propene B_water B_IPA
% 0.0009   0.9990  0      0.9333    0.0667  0
% 0.0009   0.9988  0.0002 0.9303    0.0665  0.0032
% 0.0011   0.9975  0.0013 0.9135    0.0673  0.0191
% 0.0013   0.9962  0.0024 0.8956    0.0693  0.0351
%...
	\addplot3[tieline,fill=blue!10]
	table [x=A_IPA,y=A_water,z=A_propene] 
		{plotdata/ternary_data.txt};
\end{ternaryaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{ternaryaxis}[
	xlabel=x (IPA),
	ylabel=y (water),
	zlabel=z (propene),
	axis on top,
]
% plotdata/ternary_data.txt is a table of the form
%A_propene A_water A_IPA  B_propene B_water B_IPA
% 0.0009   0.9990  0      0.9333    0.0667  0
% 0.0009   0.9988  0.0002 0.9303    0.0665  0.0032
% 0.0011   0.9975  0.0013 0.9135    0.0673  0.0191
% 0.0013   0.9962  0.0024 0.8956    0.0693  0.0351
%...
	\addplot3[
		tieline={each nth tie=5},
		fill=blue!10,
	]
	table [x=A_IPA,y=A_water,z=A_propene] 
		{plotdata/ternary_data.txt};
\end{ternaryaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{ternaryaxis}[
	xlabel=x (IPA),
	ylabel=y (water),
	zlabel=z (propene),
	axis on top,
]
% plotdata/ternary_data.txt is a table of the form
%A_propene A_water A_IPA  B_propene B_water B_IPA
% 0.0009   0.9990  0      0.9333    0.0667  0
% 0.0009   0.9988  0.0002 0.9303    0.0665  0.0032
% 0.0011   0.9975  0.0013 0.9135    0.0673  0.0191
% 0.0013   0.9962  0.0024 0.8956    0.0693  0.0351
%...
	\addplot3[
		point meta=rand,
		tieline={
			each nth tie=8,
			tieline style={contour prepared}
		},
		fill=blue!10,
	]
	table [x=A_IPA,y=A_water,z=A_propene] 
		{plotdata/ternary_data.txt};
\end{ternaryaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
  \begin{axis}[use units,
    x unit=m,x unit prefix=k,
    y unit=N,y unit prefix=m,
    xlabel=Distance,ylabel=Force]
    \addplot coordinates {
        (1,2.3)
        (2,2.7)
        (3,2.1)
        (4,1.8)
        (5,1.5)
        (6,1.1)
    };
  \end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
  \begin{axis}[change x base,
    x SI prefix=kilo,x unit=m,
    y SI prefix=milli,y unit=N,
    xlabel=Distance,ylabel=Force]
    \addplot coordinates {
        (1000,1)
        (2000,1.1)
        (3000,1.2)
        (4000,1.3)
    };
  \end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
	\addplot+[sharp plot] coordinates 
		{(0,0) (1,2) (2,3)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
	\addplot+[smooth] coordinates 
		{(0,0) (1,2) (2,3)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
\addplot+[const plot]
coordinates
{(0,0.1)    (0.1,0.15)  (0.2,0.5)   (0.3,0.62)
 (0.4,0.56) (0.5,0.58)  (0.6,0.65)  (0.7,0.6)
 (0.8,0.58) (0.9,0.55)  (1,0.52)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[ymin=0,ymax=1,enlargelimits=false]
\addplot
	[const plot,fill=blue,draw=black] 
coordinates
{(0,0.1)    (0.1,0.15)  (0.2,0.5)   (0.3,0.62)
 (0.4,0.56) (0.5,0.58)  (0.6,0.65)  (0.7,0.6)
 (0.8,0.58) (0.9,0.55)  (1,0.52)} 
	\closedcycle;
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
\addplot+[const plot mark right]
coordinates
{(0,0.1)    (0.1,0.15)  (0.2,0.5)   (0.3,0.62)
 (0.4,0.56) (0.5,0.58)  (0.6,0.65)  (0.7,0.6)
 (0.8,0.58) (0.9,0.55)  (1,0.52)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
\addplot+[const plot mark mid]
coordinates
{(0,0.1)    (0.1,0.15)  (0.2,0.5)   (0.3,0.62)
 (0.4,0.56) (0.5,0.58)  (0.6,0.65)  (0.7,0.6)
 (0.8,0.58) (0.9,0.55)  (1,0.52)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[samples=8]
\addplot+[jump mark left,domain=-5:0] 
	{4*x^2 - 5};
\addplot+[jump mark right,domain=-5:0] 
	{0.7*x^3 + 50};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
\addplot+[jump mark mid]
coordinates
{(0,0.1)    (0.1,0.15)  (0.2,0.5)   (0.3,0.62)
 (0.4,0.56) (0.5,0.58)  (0.6,0.65)  (0.7,0.6)
 (0.8,0.58) (0.9,0.55)  (1,0.52)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
\addplot+[xbar] coordinates 
	{(4,0) (1,1) (2,2) 
	 (5,3) (6,4) (1,5)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[xbar,enlargelimits=0.15]
\addplot
[draw=blue,pattern=horizontal lines light blue] 
coordinates
	{(10,5) (15,10) (5,15) (24,20) (30,25)};
\addplot
[draw=black,pattern=horizontal lines dark blue] 
coordinates 
	{(3,5) (5,10) (15,15) (20,20) (35,25)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
  \begin{axis}[
    xbar, xmin=0,
    width=12cm, height=3.5cm, enlarge y limits=0.5,
    xlabel={\#participants},
    symbolic y coords={no,yes},
    ytick=data,
    nodes near coords, nodes near coords align={horizontal},
    ]
    \addplot coordinates {(3,no) (7,yes)};
  \end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
  \begin{axis}[
  	title=Uses lowest $x$ coords for xmin,
    xbar,
    width=12cm, height=3.5cm, enlarge y limits=0.5,
    xlabel={\#participants},
    symbolic y coords={no,yes},
    ytick=data,
    nodes near coords, nodes near coords align={horizontal},
    ]
    \addplot coordinates {(1,no) (9,yes)};
  \end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
\addplot+[ybar] plot coordinates
	{(0,3) (1,2) (2,4) (3,1) (4,2)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	x tick label style={
		/pgf/number format/1000 sep=},
	ylabel=Population,
	enlargelimits=0.15,
	legend style={at={(0.5,-0.15)},
		anchor=north,legend columns=-1},
	ybar,
	bar width=7pt,
]
\addplot 
	coordinates {(1930,50e6) (1940,33e6)
		 (1950,40e6) (1960,50e6) (1970,70e6)};
\addplot 
	coordinates {(1930,38e6) (1940,42e6) 
		(1950,43e6) (1960,45e6) (1970,65e6)};
\addplot 
	coordinates {(1930,15e6) (1940,12e6) 
		(1950,13e6) (1960,25e6) (1970,35e6)};
\addplot[red,sharp plot,update limits=false] 
	coordinates {(1910,4.3e7) (1990,4.3e7)} 
	node[above] at (axis cs:1950,4.3e7) {Houses};
\legend{Far,Near,Here,Annot}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
    ybar,
    enlargelimits=0.15,
    legend style={at={(0.5,-0.15)},
      anchor=north,legend columns=-1},
    ylabel={\#participants},
    symbolic x coords={tool8,tool9,tool10},
    xtick=data,
    nodes near coords,
    nodes near coords align={vertical},
    ]
\addplot coordinates {(tool8,7) (tool9,9) (tool10,4)};
\addplot coordinates {(tool8,4) (tool9,4) (tool10,4)};
\addplot coordinates {(tool8,1) (tool9,1) (tool10,1)};
\legend{used,understood,not understood}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	x tick label style={
		/pgf/number format/1000 sep=},
	ylabel=Population,
	enlargelimits=0.15,
	legend style={at={(0.5,-0.15)},
		anchor=north,legend columns=-1},
	ybar=5pt,% configures `bar shift'
	bar width=9pt,
	nodes near coords,
	point meta=y *10^-7 % the displayed number
]
\addplot 
	coordinates {(1930,50e6) (1940,33e6)
		 (1950,40e6) (1960,50e6) (1970,70e6)};
\addplot 
	coordinates {(1930,38e6) (1940,42e6) 
		(1950,43e6) (1960,45e6) (1970,65e6)};
\legend{Far,Near}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
  \begin{axis}[
    ybar,
    enlargelimits=0.15,
    legend style={at={(0.5,-0.2)},
      anchor=north,legend columns=-1},
    ylabel={\#participants},
    symbolic x coords={excellent,good,neutral,%
		not good,poor},
    xtick=data,
    nodes near coords, 
	nodes near coords align={vertical},
    x tick label style={rotate=45,anchor=east},
    ]
    \addplot coordinates {(excellent,0) (good,8) 
		(neutral,2) (not good,0) (poor,0)};
  \end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
\addplot+[ybar interval] plot coordinates
	{(0,2) (0.1,1) (0.3,0.5) (0.35,4) (0.5,3)
	 (0.6,2) (0.7,1.5) (1,1.5)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[ybar interval,
	xtick=data,
	xticklabel interval boundaries,
	x tick label style=
		{rotate=90,anchor=east}
	]
\addplot coordinates
	{(0,2) (0.1,1) (0.3,0.5) (0.35,4) (0.5,3)
	 (0.6,2) (0.7,1.5) (1,1.5)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	x tick label style={
		/pgf/number format/1000 sep=},
	ylabel=Population,
	enlargelimits=0.05,
	legend style={at={(0.5,-0.15)},
		anchor=north,legend columns=-1},
	ybar interval=0.7,
]
\addplot 
	coordinates {(1930,50e6) (1940,33e6)
		 (1950,40e6) (1960,50e6) (1970,70e6)};
\addplot 
	coordinates {(1930,38e6) (1940,42e6) 
		(1950,43e6) (1960,45e6) (1970,65e6)};
\addplot 
	coordinates {(1930,15e6) (1940,12e6) 
		(1950,13e6) (1960,25e6) (1970,35e6)};
\legend{Far,Near,Here}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	xmin=0,xmax=53,
	ylabel=Age,
	xlabel=Quantity,
	enlargelimits=false,
	ytick=data,
	yticklabel interval boundaries,
	xbar interval,
]
\addplot
	coordinates {(10,5) (10.5,10) (15,13) 
		(24,18) (50,21) (23,25) (10,30) 
		(3,50) (3,70)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
  ybar interval,
  xticklabel=
\pgfmathprintnumber\tick--\pgfmathprintnumber\nexttick
]
	\addplot+[hist={bins=3}]
		table[row sep=\\,y index=0] {
		data\\
		1\\ 2\\ 1\\ 5\\ 4\\ 10\\ 
		7\\ 10\\ 9\\ 8\\ 9\\ 9\\ 
	};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
  ybar interval,
  xtick=,% reset from ybar interval
  xticklabel=
    {$[\pgfmathprintnumber\tick,%
	   \pgfmathprintnumber\nexttick)$}
]
% a data file containing 8000 normally distributed
% random numbers of mean 0 and variance 1
\addplot+[hist={data=x}]
	file {plotdata/pgfplots.randn.dat};
	
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
  tiny,
  height=4cm,width=12cm,
  ybar interval,
  ymin=0,
  xmin=0,xmax=1,
  axis on top,
  extra x ticks={0,1},
  extra x tick style={
    grid=none,
    x tick label as interval=false,
    xticklabel=$\pgfmathprintnumber\tick$
  },
  xticklabel={$[\pgfmathprintnumber[fixed]\tick,\cdot)$}
]
	\addplot+[samples=200,hist] {rnd};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
  ybar interval,
  xtick=,% reset from ybar interval
  xticklabel=
    {$[\pgfmathprintnumber\tick,
	   \pgfmathprintnumber\nexttick)$}
]
% a data file containing 8000 normally distributed
% random numbers of mean 0 and variance 1
\addplot+[hist={
		data=x,
		cumulative}]
	file {plotdata/pgfplots.randn.dat};
	
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
  ybar interval,
  hist/symbolic coords={A,B,C,D,E,F,G,H,I,J},
  xticklabel={[\tick--\nexttick[},
]
    \addplot+[hist={bins=3}]
        table[row sep=\\,y index=0] {
        data\\
		A\\ B\\ A\\ D\\ F\\ J\\
		G\\ J\\ I\\ H\\ I\\ I\\
    };
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
\addplot+[xcomb] coordinates 
	{(4,0) (1,1) (2,2) 
	 (5,3) (6,4) (1,5)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
\addplot+[ycomb] plot coordinates
	{(0,3) (1,2) (2,4) (3,1) (4,2)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
	\addplot[blue,
		quiver={u=1,v=2*x},
		-stealth,samples=15] {x^2};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		title={$x \exp(-x^2-y^2)$ and its gradient},
		domain=-2:2,
		view={0}{90},
		axis background/.style={fill=white},
	]
		\addplot3[contour gnuplot={number=9,
			labels=false},thick] 
				{exp(0-x^2-y^2)*x};
		\addplot3[blue,
			quiver={
			 u={exp(0-x^2-y^2)*(1-2*x^2)},
			 v={exp(0-x^2-y^2)*(-2*x*y)},
			 scale arrows=0.3,
			},
			-stealth,samples=15]
				{exp(0-x^2-y^2)*x};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	domain=0:1,
	xmax=1,
	ymax=1,
]
\addplot3[surf] {x*y};
\addplot3[blue,/pgfplots/quiver,
	quiver/u=y,
	quiver/v=x,
	quiver/w=0,
	quiver/scale arrows=0.1,
	-stealth,samples=10] {1};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[axis equal,
 axis lines=middle,
 axis line style={->},
 tick style={color=black},
 xtick=\empty,
 ytick=\empty
]
  \addplot[samples=20, domain=0:2*pi, 
	% the default choice 'variable=\x' leads to 
	% unexpected results here!
	variable=\t,
	quiver={
		u={-sin(deg(t))},
		v={cos(deg(t))},
		scale arrows=0.5},
		->,blue]
	({cos(deg(t))}, {sin(deg(t))});
  \addplot[samples=100, domain=0:2*pi] 
	({cos(deg(x))}, {sin(deg(x))});
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[title=Quiver and plot table]
    \addplot[blue,
        quiver={u=\thisrow{u},v=\thisrow{v}},
        -stealth] 
	table 
	{
	x y u v
	0 0 1 0
	1 1 1 1
	2 4 1 4
	3 9 1 6
	4 16 1 8
	};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[stack plots=y]
	\addplot coordinates
		{(0,1) (1,1) (2,2) (3,2)};
	\addplot coordinates
		{(0,1) (1,1) (2,2) (3,2)};
	\addplot coordinates
		{(0,1) (1,1) (2,2) (3,2)};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[stack plots=y,/tikz/ybar]
	\addplot coordinates
		{(0,1) (1,1) (2,3) (3,2) (4,1.5)};
	\addplot coordinates
		{(0,1) (1,1) (2,3) (3,2) (4,1.5)};
	\addplot coordinates
		{(0,1) (1,1) (2,3) (3,2) (4,1.5)};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[ybar stacked]
	\addplot coordinates
		{(0,1) (1,1) (2,3) (3,2) (4,1.5)};
	\addplot coordinates
		{(0,1) (1,1) (2,3) (3,2) (4,1.5)};
	\addplot coordinates
		{(0,1) (1,1) (2,3) (3,2) (4,1.5)};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
    ybar stacked,
    enlargelimits=0.15,
    legend style={at={(0.5,-0.20)},
      anchor=north,legend columns=-1},
    ylabel={\#participants},
    symbolic x coords={tool1, tool2, tool3, tool4, 
		tool5, tool6, tool7},
    xtick=data,
    x tick label style={rotate=45,anchor=east},
    ]
\addplot+[ybar] plot coordinates {(tool1,0) (tool2,2) 
  (tool3,2) (tool4,3) (tool5,0) (tool6,2) (tool7,0)};
\addplot+[ybar] plot coordinates {(tool1,0) (tool2,0) 
  (tool3,0) (tool4,3) (tool5,1) (tool6,1) (tool7,0)};
\addplot+[ybar] plot coordinates {(tool1,6) (tool2,6)
  (tool3,8) (tool4,2) (tool5,6) (tool6,5) (tool7,6)};
\addplot+[ybar] plot coordinates {(tool1,4) (tool2,2) 
  (tool3,0) (tool4,2) (tool5,3) (tool6,2) (tool7,4)};
\legend{never, rarely, sometimes, often}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[stack plots=x,/tikz/xbar]
	\addplot coordinates
		{(1,0) (2,1) (2,2) (3,3)};
	\addplot coordinates
		{(1,0) (2,1) (2,2) (3,3)};
	\addplot coordinates
		{(1,0) (2,1) (2,2) (3,3)};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	
\begin{tikzpicture}
	\begin{axis}[xbar stacked]
	\addplot coordinates
		{(1,0) (2,1) (2,2) (3,3)};
	\addplot coordinates
		{(1,0) (2,1) (2,2) (3,3)};
	\addplot coordinates
		{(1,0) (2,1) (2,2) (3,3)};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		stack plots=y,
		area style,
		enlarge x limits=false]
	\addplot coordinates
		{(0,1) (1,1) (2,2) (3,2)} 
		\closedcycle;
	\addplot coordinates
		{(0,1) (1,1) (2,2) (3,2)}
		\closedcycle;
	\addplot coordinates
		{(0,1) (1,1) (2,2) (3,2)}
		\closedcycle;
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		const plot,
		stack plots=y,
		area style,
		enlarge x limits=false]
	\addplot coordinates
		{(0,1) (1,1) (2,2) (3,2)} 
		\closedcycle;
	\addplot coordinates
		{(0,1) (1,1) (2,2) (3,2)}
		\closedcycle;
	\addplot coordinates
		{(0,1) (1,1) (2,2) (3,2)}
		\closedcycle;
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		smooth,
		stack plots=y,
		area style,
		enlarge x limits=false]
	\addplot coordinates
		{(0,1) (1,1) (2,2) (3,2)} 
		\closedcycle;
	\addplot coordinates
		{(0,1) (1,1) (2,2) (3,2)}
		\closedcycle;
	\addplot coordinates
		{(0,1) (1,1) (2,2) (3,2)}
		\closedcycle;
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstableread{pgfplots.timeseries.dat}\loadedtable
\pgfplotstabletypeset\loadedtable
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstableread
	{pgfplots.timeseries.dat}
	{\loadedtable}
\begin{tikzpicture}
	\begin{axis}[
		ymin=0,
		minor tick num=4,
		enlarge x limits=false,
		axis on top,
		every axis plot post/.append style=
			{mark=none},
		const plot,
		legend style={
			area legend,
			at={(0.5,-0.15)},
			anchor=north,
			legend columns=-1}]
	\addplot[draw=blue,fill=blue!30!white]
	 table[x=time,y=1minload] from \loadedtable
		\closedcycle;
	\addplot table[x=time,y=nodes] from \loadedtable;
	\addplot table[x=time,y=cpus] from \loadedtable;
	\addplot table[x=time,y=processes] 
		from \loadedtable;
	\legend{1min load,nodes,cpus,processes}
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstableread{pgfplots.timeseries.dat}\loadedtable
\begin{tikzpicture}
	\begin{axis}[
		ymin=0,
		minor tick num=4,
		enlarge x limits=false,
		const plot,
		axis on top,
		stack plots=y,
		cycle list={%
			{blue!70!black,fill=blue},%
			{blue!60!white,fill=blue!30!white},%
			{draw=none,fill={rgb:red,138;green,82;blue,232}},%
			{red,thick}%
		},
		ylabel={Mem [GB]},
		legend style={
			area legend,
			at={(0.5,-0.15)},
			anchor=north,
			legend columns=2}]
	\addplot table[x=time,y=memused]      from \loadedtable \closedcycle;
	\addplot table[x=time,y=memcached]    from \loadedtable \closedcycle;
	\addplot table[x=time,y=membuf]       from \loadedtable \closedcycle;
	\addplot+[stack plots=false]
			 table[x=time,y=memtotal]     from \loadedtable;
	\legend{Memory used,Memory cached,Memory buffered,Total memory}
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[enlargelimits=false]
	\addplot+[only marks,samples=400]
		{rand};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot+[scatter,only marks,
		 samples=50,scatter src=y]
		{x-x^2};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot+[scatter,
		 samples=50,scatter src=y]
		{x^3};
	\end{axis}
\end{tikzpicture}
 
	\begin{tikzpicture}
	\begin{axis}
		% provide color data explicitly using []
		% behind coordinates:
		\addplot+[scatter,scatter src=explicit]
			coordinates {
				(0,0) [1.0e10]
				(1,2) [1.1e10]
				(2,3) [1.2e10]
				(3,4) [1.3e10]
				% ...
			};
        % Assumes a datafile.dat like
        % xcolname  ycolname    colordata
        % 0         0           0.001
        % 1         2           0.3
        % 2         2.1         0.4
        % 3         3           0.5
        % ...
        % the file may have more columns.
		\addplot+[scatter,scatter src=explicit]
			table[x=xcolname,y=ycolname,meta=colordata] 
				{datafile.dat};
		% Same data as last example: 
		\addplot+[scatter,scatter src=\thisrow{colordata}+\thisrow{ycolname}]
			table[x=xcolname,y=ycolname] 
				{datafile.dat};
        % Assumes a datafile.dat like
        % 0         0           0.001
        % 1         2           0.3
        % 2         2.1         0.4
        % 3         3           0.5
        % ...
        % the first three columns will be used here:
		\addplot+[scatter,scatter src=explicit]
			file {datafile.dat};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[title=Default arguments]
\addplot+[scatter,scatter src=y]
	{2*x+3};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	title=Black fill color and varying draw color,
	scatter/use mapped color=
		{draw=mapped color,fill=black}]
\addplot+[scatter,scatter src=y]
	{2*x+3};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	title=Black draw color and varying fill color,
	scatter/use mapped color=
		{draw=black,fill=mapped color}]
\addplot+[scatter,scatter src=y]
	{2*x+3};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[scatter/classes={
	a={mark=square*,blue},%
	b={mark=triangle*,red},%
	c={mark=o,draw=black}}]
	% \addplot[] is better than \addplot+[] here:
	% it avoids scalings of the cycle list
	\addplot[scatter,only marks,
		scatter src=explicit symbolic]
		coordinates {
			(0.1,0.15)  [a]
			(0.45,0.27) [c]
			(0.02,0.17) [a]
			(0.06,0.1)  [a]
			(0.9,0.5)   [b]
			(0.5,0.3)   [c]
			(0.85,0.52) [b]
			(0.12,0.05) [a]
			(0.73,0.45) [b]
			(0.53,0.25) [c]
			(0.76,0.5)  [b]
			(0.55,0.32) [c]
		};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[legend pos=south east]
	% The data file contains:
	% x     y      label
	% 0.1   0.15   a 
	% 0.45  0.27   c 
	% 0.02  0.17   a 
	% 0.06  0.1    a 
	% 0.9   0.5    b 
	% 0.5   0.3    c 
	% 0.85  0.52   b 
	% 0.12  0.05   a 
	% 0.73  0.45   b 
	% 0.53  0.25   c 
	% 0.76  0.5    b 
	% 0.55  0.32   c 
    \addplot[
		% clickable coords={\thisrow{label}}, 
		scatter/classes={
			a={mark=square*,blue},%
			b={mark=triangle*,red},%
			c={mark=o,draw=black,fill=black}%
		},
		scatter,only marks,
		scatter src=explicit symbolic]
	table[x=x,y=y,meta=label]
			{plotdata/scattercl.dat};
	\addplot coordinates 
		{(0.1,0.1) (0.5,0.3) (0.85,0.5)};
	\legend{Class 1,Class 2,Class 3,Line}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[nodes near coords]
	\addplot+[only marks] coordinates {
		(0.5,0.2) (0.2,0.1) (0.7,0.6) 
		(0.35,0.4) (0.65,0.1)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[nodes near coords,enlargelimits=0.2]
	\addplot+[only marks,
		point meta=explicit symbolic] 
	coordinates {
		(0.5,0.2) [(1)]
		(0.2,0.1) [(2)]
		(0.7,0.6) [(3)]
		(0.35,0.4) [(4)]
		(0.65,0.1) [(5)]
	};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[enlargelimits=0.2]
		\addplot[
		  scatter,mark=*,only marks,
		  % we use 'point meta' as color data...
		  point meta=\thisrow{color},
		  % ... therefore, we can't use it as argument for nodes near coords ...
		  nodes near coords*={$(\pgfmathprintnumber[frac]\myvalue)$},
		  % ... which requires to define a visualization dependency:
		  visualization depends on={\thisrow{myvalue} \as \myvalue},
		] 
		table {
			x      y    color   myvalue
			0.5    0.2  1       0.25   
			0.2    0.1  2       1.5    
			0.7    0.6  3       0.75   
			0.35   0.4  4       0.125  
			0.65   0.1  5       2      
		};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
% Low-Level scatter plot interface Example: 
% use three different marker classes 
% 0% - 30%   : first class
% 30% - 60%  : second class
% 60% - 100% : third class
\begin{axis}[
scatter/@pre marker code/.code={%
   \ifdim\pgfplotspointmetatransformed pt<300pt
      \def\markopts{mark=square*,fill=blue}%
   \else
      \ifdim\pgfplotspointmetatransformed pt<600pt
         \def\markopts{mark=triangle*,fill=orange}%
      \else
         \def\markopts{mark=pentagon*,fill=red}%
      \fi
   \fi
   \expandafter\scope\expandafter[\markopts]
},%
scatter/@post marker code/.code={%
   \endscope
}]
\addplot+[scatter,scatter src=y,
	samples=40]
   {sin(deg(x))};
   
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot[mesh] {x+sin(deg(x))};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot[mesh,point meta=explicit] 
		coordinates {
			(0,0)   [0]
			(1,0.1) [1]
			(2,0.1) [2]
			(3,0.3) [3]
			(4,0.3) [4]
		};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	title=Discarding unbounded coords,
	unbounded coords=discard]
	\addplot coordinates {
		(0,0) (10,50) (20,100) (30,200) 
		(40,inf) (50,600) (60,800) (80,1000)
	};
\end{axis}
\end{tikzpicture}
\begin{tikzpicture}
\begin{axis}[
	title=Jumps at unbounded coords,
	unbounded coords=jump]
	\addplot coordinates {
		(0,0) (10,50) (20,100) (30,200) 
		(40,inf) (50,600) (60,800) (80,1000)
	};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
  unbounded coords=jump,
  % A technical filter to cut out 
  % the x<0 and y<0 edge.
  filter point/.code={%
    \pgfmathparse
      {\pgfkeysvalueof{/data point/x}<0}%
    \ifpgfmathfloatcomparison
      \pgfmathparse
        {\pgfkeysvalueof{/data point/y}<0}%
      \ifpgfmathfloatcomparison
        \pgfkeyssetvalue{/data point/x}{nan}%
      \fi
    \fi
  },
  ]
  \addplot3[surf] {exp(-sqrt(x^2 + y^2))};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[view={0}{0},
		xlabel=$x$,
		zlabel=$z$,
		title=View along the positive $y$ axis]
		\addplot3[surf] {x};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[view={0}{90},
		xlabel=$x$,
		ylabel=$y$,
		title=View from top]
		\addplot3[surf] {x};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[view={-45}{45},
		xlabel=$x$,ylabel=$y$,zlabel=$z$]
		\addplot3[surf] {x};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[view/h=-30]
	\addplot3[
		surf,
		%shader=interp,
		shader=flat,
		samples=50,
		domain=-3:3,y domain=-2:2] 
		{sin(deg(x+y^2))};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[view/h=10]
	\addplot3[
		surf,
		%shader=interp,
		shader=flat,
		samples=50,
		domain=-3:3,y domain=-2:2] 
		{sin(deg(x+y^2))};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[view/h=40,colormap/violet]
	\addplot3[
		surf,
		%shader=interp,
		shader=flat,
		samples=50,
		domain=-3:3,y domain=-2:2] 
		{sin(deg(x+y^2))};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[view/h=70]
	\addplot3[
		surf,
		%shader=interp,
		shader=flat,
		samples=50,
		domain=-3:3,y domain=-2:2] 
		{sin(deg(x+y^2))};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	view/h=60,
	plot box ratio=1 1 1,
	colormap={violet}{[1cm] rgb255(0cm)=(25,25,122)
		color(1cm)=(white) rgb255(5cm)=(238,140,238)},
	xlabel=$x$,
	ylabel=$t$,
	zlabel={$p(x,t)$},
	shader=faceted,
	title=Initial \texttt{plot box ratio},
]
	\addplot3[surf,y domain=0.02:3.5,samples=81]
		{1/(2*sqrt(pi*y)) * exp(0-x^2/y)};
	% the '0' is a work-around for a bug in PGF 2.00
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	view/h=60,
	plot box ratio=1 2 1,
	colormap={violet}{[1cm] rgb255(0cm)=(25,25,122)
		color(1cm)=(white) rgb255(5cm)=(238,140,238)},
	xlabel=$x$,
	ylabel=$t$,
	zlabel={$p(x,t)$},
	shader=flat,
	title=\texttt{plot box ratio=1 2 1},
]
	\addplot3[surf,y domain=0.02:3.5,samples=81] 
		{1/(2*sqrt(pi*y)) * exp(0-x^2/y)};
	% the '0' is a work-around for a bug in PGF 2.00
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		3d box=background,
		% pretty printing, but irrelevant:
		title={3d box=background},
		samples=5,
		domain=-4:4,
		xtick=data,
		ytick=data,
	]
		\addplot3[surf] {x*y};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		3d box,% same as 3d box=complete
		% pretty printing, but irrelevant:
		title={3d box=complete},
		samples=5,
		domain=-4:4,
		xtick=data,
		ytick=data,
	]
		\addplot3[surf] {x*y};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		3d box=complete,
		grid=major,
		title={3d box=complete},
		samples=5, domain=-4:4,
		xtick=data, ytick=data,
	]
		\addplot3[surf] {x*y};
	\end{axis}
\end{tikzpicture}%
~
\begin{tikzpicture}
	\begin{axis}[
		3d box=complete*,
		grid=major,
		title={3d box=complete*},
		samples=5, domain=-4:4,
		xtick=data, ytick=data,
	]
		\addplot3[surf] {x*y};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		axis lines=center,
		axis on top,
		samples=5, domain=-4:4,
		xtick=data, ytick=data,
		ztick=\empty, % no z ticks here
	]
		\addplot3[surf] {x*y};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		axis lines*=left,
		samples=5, domain=-4:4,
		xtick=data, ytick=data,
	]
		\addplot3[surf] {x*y};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		axis lines*=right,
		samples=5, domain=-4:4,
		xtick=data, ytick=data,
	]
		\addplot3[surf] {x*y};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
		% this yields a 3x4 matrix:
		\addplot3[surf] coordinates {
			(0,0,0) (1,0,0)   (2,0,0)   (3,0,0)
			(0,1,0) (1,1,0.6) (2,1,0.7) (3,1,0.5)
			(0,2,0) (1,2,0.7) (2,2,0.8) (3,2,0.5)
		};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
		% We have `plotdata/first3d.dat' with
		%---------
		% 0 0 0.8
		% 1 0 0.56
		% 2 0 0.5
		% 3 0 0.75
		%
		% 0 1 0.6
		% 1 1 0.3
		% 2 1 0.21
		% 3 1 0.3
		%
		% 0 2 0.68
		% 1 2 0.22
		% 2 2 0.25
		% 3 2 0.4
		%
		% 0 3 0.7
		% 1 3 0.5
		% 2 3 0.58
		% 3 3 0.9
		% -> yields a 4x4 matrix:
		\addplot3[surf] file {plotdata/first3d.dat};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
		% this yields also a 3x4 matrix:
		\addplot3[surf,mesh/rows=3] coordinates {
			(0,0,0) (1,0,0)   (2,0,0)   (3,0,0)
			(0,1,0) (1,1,0.6) (2,1,0.7) (3,1,0.5)
			(0,2,0) (1,2,0.7) (2,2,0.8) (3,2,0.5)
		};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[mesh/ordering=x varies]
	% this yields a 3x4 matrix in `x varies'
	% ordering:
	\addplot3[surf] coordinates {
		(0,0,0) (1,0,0)   (2,0,0)   (3,0,0)
		(0,1,0) (1,1,0.6) (2,1,0.7) (3,1,0.5)
		(0,2,0) (1,2,0.7) (2,2,0.8) (3,2,0.5)
	};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[mesh/ordering=y varies]
	% this yields a 3x4 matrix in colwise ordering:
	\addplot3[surf] coordinates {
		(0,0,0) (0,1,0)   (0,2,0)
		(1,0,0) (1,1,0.6) (1,2,0.7)
		(2,0,0) (2,1,0.7) (2,2,0.8)
		(3,0,0) (3,1,0.5) (3,2,0.5)
	};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
		\addplot3[surf] {y};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[colorbar]
		\addplot3
			[surf,faceted color=blue,
			 samples=15,
			 domain=0:1,y domain=-1:1]
			{x^2 - y^2};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[xlabel=$x$,ylabel=$y$]
	\addplot3 coordinates {(0,0,0) (0,0.5,1) (0,1,0)};
	\addplot3 coordinates {(0,1,0) (0.5,1,1) (1,1,0)};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[view={60}{30}]
\addplot3+[domain=0:5*pi,samples=60,samples y=0] 
	({sin(deg(x))},
	 {cos(deg(x))},
	 {2*x/(5*pi)});
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		xlabel=$x$,
		ylabel=$y$,
		zlabel={$f(x,y) = x\cdot y$},
		title=A Scatter Plot Example]
	% `pgfplotsexample4_grid.dat' contains a
	% large sequence of input points of the form
	% x_0   x_1     f(x)    
	% 0     0       0       
	% 0     0.03125 0       
	% 0     0.0625  0       
	% 0     0.09375 0       
	% 0     0.125   0       
	% 0     0.15625 0       
	\addplot3+[only marks] table
		{plotdata/pgfplotsexample4_grid.dat};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		xlabel=$x$,
		ylabel=$y$,
		zlabel={$f(x,y) = x\cdot y$},
		title=A Scatter Plot Example]
	\addplot3+[only marks,scatter] table 
		{plotdata/pgfplotsexample4_grid.dat};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		3d box,
		zmax=1.4,
		colorbar,
		xlabel=$x$,
		ylabel=$y$,
		zlabel={$f(x,y) = x\cdot y$},
		title={Using Coordinate Filters to fix $z=1.4$}]
	% `pgfplotsexample4.dat' contains similar data as in 
	% `pgfplotsexample4_grid.dat', but it uses a uniform
	% matrix structure (same number of points in every scanline).
	% See examples above for extracts.
	\addplot3[surf,mesh/ordering=y varies] 
		table {plotdata/pgfplotsexample4.dat};
	\addplot3[scatter,scatter src=\thisrow{f(x)},only marks, z filter/.code={\def\pgfmathresult{1.4}}] 
		table {plotdata/pgfplotsexample4_grid.dat};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	view={120}{40},
	width=220pt,
	height=220pt,
	grid=major,
	z buffer=sort,
	xmin=-1,xmax=9,
	ymin=-1,ymax=9,
	zmin=-1,zmax=9,
	enlargelimits=upper,
	xtick={-1,1,...,19},
	ytick={-1,1,...,19},
	ztick={-1,1,...,19},
	xlabel={$l_1$},
	ylabel={$l_2$},
	zlabel={$l_3$},
	point meta={x+y+z+3},
	colormap={summap}{
		color=(black); color=(blue); 
		color=(black); color=(white) 
		color=(orange) color=(violet) 
		color=(red)
	},
	scatter/use mapped color={
		draw=mapped color,fill=mapped color!70},
	]
	% `pgfplots_scatter4.dat' contains a large sequence of
	% the form
	% l_0   l_1     l_2     
	% 1     6       -1      
	% -1    -1      -1      
	% 0     -1      -1      
	% -1    0       -1      
	% -1    -1      0       
	% 1     -1      -1      
	% 0     0       -1      
	% 0     -1      0       
	\addplot3[only marks,scatter,mark=cube*,mark size=7] 
		table {plotdata/pgfplots_scatterdata4.dat};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
		\addplot3[mesh] {x^2};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot3+[mesh,scatter,samples=10,domain=0:1] 
		{x*(1-x)*y*(1-y)};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[grid=major,view={210}{30}]
	\addplot3+[mesh,scatter,samples=10,domain=0:1] 
		{5*x*sin(2*deg(x)) * y*(1-y)};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[title=With background]
	\addplot3[mesh,domain=-2:2] {exp(-x^2-y^2)};	
	\end{axis}
\end{tikzpicture}
\begin{tikzpicture}
	\begin{axis}[title=Without background]
	\addplot3[surf,fill=white,domain=-2:2] {exp(-x^2-y^2)};	
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[view/az=14]
	\addplot3[mesh,draw=red,samples=10] {x^2-y^2};	
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
		\addplot3[surf,shader=interp] {x*y};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		grid=major,
		colormap/greenyellow]
	\addplot3[surf,samples=30,domain=0:1] 
		{5*x*sin(2*deg(x)) * y};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
		\addplot3[surf,faceted color=blue] {x+y};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[colormap/cool]
	\addplot3[surf,samples=10,domain=0:1,
		shader=interp] 
		{x*(1-x)*y*(1-y)};
	\end{axis}
\end{tikzpicture}
\begin{tikzpicture}
	\begin{axis}[colormap/cool]
	\addplot3[surf,samples=25,domain=0:1,
		shader=flat] 
		{x*(1-x)*y*(1-y)};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[grid=major]
		\addplot3[surf,shader=interp,
			samples=25,domain=0:2,y domain=0:1] 
			{exp(-x) * sin(pi*deg(y))};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[grid=major]
		\addplot3[surf,shader=faceted,
			samples=25,domain=0:2,y domain=0:1] 
			{exp(-x) * sin(pi*deg(y))};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot3[surf,shader=flat,
		samples=10,domain=0:1] 
		{x^2*y};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot3[surf,shader=interp,
		samples=10,domain=0:1] 
		{x^2*y};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot3[surf,shader=faceted,
		samples=10,domain=0:1] 
		{x^2*y};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot3[surf,shader=faceted interp,
		samples=10,domain=0:1] 
		{x^2*y};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot3[surf,shader=flat,
		draw=black,
		samples=10,domain=0:1] 
		{x^2*y};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot3[surf,shader=faceted,
		scatter,mark=*,
		samples=10,domain=0:1] 
		{x^2*y};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
  axis lines=center,
  axis on top,
  xlabel={$x$}, ylabel={$y$}, zlabel={$z$},
  domain=0:1,
  y domain=0:2*pi,
  xmin=-1.5, xmax=1.5,
  ymin=-1.5, ymax=1.5, zmin=0.0,
  mesh/interior colormap=
  	{blueblack}{color=(black) color=(blue)},
  colormap/blackwhite, 
  samples=10,
  samples y=40,
  z buffer=sort,
 ]
  \addplot3[surf] 
  	({x*cos(deg(y))},{x*sin(deg(y))},{x});
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
  	hide axis,
	xlabel=$x$,ylabel=$y$,
	mesh/interior colormap name=hot,
	colormap/blackwhite, 
 ]
  \addplot3[domain=-1.5:1.5,surf]
  	{-exp(-x^2-y^2)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	title=Example needing fine-tuning,
	xlabel=$x$,
	ylabel=$y$]
\addplot3[surf,
  mesh/interior colormap=
    {blueblack}{color=(black) color=(blue)},
  colormap/blackwhite, 
  domain=0:1] 
	{sin(deg(8*pi*x))* exp(-20*(y-0.5)^2) 
	+ exp(-(x-0.5)^2*30 
		- (y-0.25)^2 - (x-0.5)*(y-0.25))};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	title=Example of before with fine-tuning,
	xlabel=$x$,
	ylabel=$y$]
\addplot3[surf,
  mesh/interior colormap=
    {blueblack}{color=(black) color=(blue)},
  % slightly increase sampling quality (was 25):
  samples=31,    
  % avoids overshooting corners:
  miter limit=1, 
  % move boundary between inner and outer:
  mesh/interior colormap thresh=0.1,
  colormap/blackwhite, 
  domain=0:1] 
	{sin(deg(8*pi*x))* exp(-20*(y-0.5)^2) 
	+ exp(-(x-0.5)^2*30 
		- (y-0.25)^2 - (x-0.5)*(y-0.25))};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[view={0}{90}]
	\addplot3[contour gnuplot]
		{x*y};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot3[contour gnuplot]
		{exp(0-x^2-y^2)};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
    \begin{axis}[
        title={$x \exp(-x^2-y^2)$},
		domain=-2:2,enlarge x limits,
        view={0}{90},
    ]
   \addplot3[contour gnuplot={number=14},thick]
          {exp(0-x^2-y^2)*x};
    \end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
    \begin{axis}[
        title={$x \exp(-x^2-y^2)$},
		domain=-2:2,
		enlargelimits,
        view={0}{90},
    ]
   \addplot3[
     contour gnuplot={levels={-0.1,-0.2,-0.6}},
   	 thick]
          {exp(0-x^2-y^2)*x};
    \end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot[contour prepared]
		table {
			 2  2  0.8        
			                  
			 0.857143  2  0.6 
			 1  1  0.6        
			 2  0.857143  0.6 
			 2.5  1  0.6      
			 2.66667  2  0.6  
			                  
			 0.571429  2  0.4 
			 0.666667  1  0.4 
			 1  0.666667  0.4 
			 2  0.571429  0.4 
			 3  0.8  0.4      
			                  
			 0.285714  2  0.2 
			 0.333333  1  0.2 
			 1  0.333333  0.2 
			 2  0.285714  0.2 
			 3  0.4  0.2      
		};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot[contour prepared,
		contour prepared format=matlab]
	table {
% (0.2,5) ==> contour `0.2' (x), 5 points follow (y):
	   2.0000000e-01   5.0000000e+00 
	   3.0000000e+00   4.0000000e-01 
	   2.0000000e+00   2.8571429e-01 
	   1.0000000e+00   3.3333333e-01 
	   3.3333333e-01   1.0000000e+00 
	   2.8571429e-01   2.0000000e+00 
% (0.4,5) ==> contour `0.4', consists of 5 points
	   4.0000000e-01   5.0000000e+00 
	   3.0000000e+00   8.0000000e-01 
	   2.0000000e+00   5.7142857e-01 
	   1.0000000e+00   6.6666667e-01 
	   6.6666667e-01   1.0000000e+00 
	   5.7142857e-01   2.0000000e+00 
% (0.6,6) ==> contour `0.6', has 6 points
	   6.0000000e-01   6.0000000e+00 
	   2.6666667e+00   2.0000000e+00 
	   2.5000000e+00   1.0000000e+00 
	   2.0000000e+00   8.5714286e-01 
	   1.0000000e+00   1.0000000e+00 
	   1.0000000e+00   1.0000000e+00 
	   8.5714286e-01   2.0000000e+00 
		};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		title=Separating $z$ from Color Value,
		xlabel=$x$,
		ylabel=$y$,
	]
	\addplot3[contour prepared,
		point meta=\thisrow{level}]
		table {
	 x         y   z   level   
	 0.857143  2  0.4 0.6		
	 1         1  0.6  0.6		
	 2  0.857143 0.6  0.6		
	 2.5  1      0.6  0.6		
	 2.66667  2  0.4  0.6		
	                  		
	 0.571429  2  0.2 0.4		
	 0.666667  1  0.4 0.4		
	 1  0.666667  0.4 0.4		
	 2  0.571429  0.4 0.4		
	 3  0.8       0.2 0.4		
	                  		
	 0.285714  2  0   0.2		
	 0.333333  1  0.2 0.2		
	 1  0.333333  0.2 0.2		
	 2  0.285714  0.2 0.2		
	 3  0.4       0   0.2		
		};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
    \begin{axis}[
        title={$x \exp(-x^2-y^2)$},
		domain=-2:2,enlarge x limits,
        view={0}{90},
    ]
   \addplot3[
   		contour gnuplot={
			scanline marks=required,
   			number=14,
			contour label style={
				/pgf/number format/fixed,
				/pgf/number format/precision=1,
			},
		},thick
	]
          {exp(0-x^2-y^2)*x};
    \end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[view={0}{90}]
	\addplot3[contour gnuplot={
		labels over line,number=9}]
		{x*y};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[view={60}{30}]
	\addplot3+[domain=0:5*pi,samples=60,samples y=0] 
		({sin(deg(x))},
		 {cos(deg(x))},
		 {2*x/(5*pi)});
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[view={60}{30}]
	\addplot3[mesh,z buffer=sort,
		samples=20,domain=-1:0,y domain=0:2*pi]
		({sqrt(1-x^2) * cos(deg(y))},
		 {sqrt( 1-x^2 ) * sin(deg(y))},
		 x);
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[view={60}{30}]
	\addplot3[mesh,z buffer=sort,
		scatter,only marks,scatter src=z,
		samples=30,domain=-1:1,y domain=0:2*pi]
		({sqrt(1-x^2) * cos(deg(y))},
		 {sqrt( 1-x^2 ) * sin(deg(y))},
		 x);
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[view={60}{30}]
	\addplot3[surf,shader=interp,z buffer=sort,
		samples=30,domain=-1:0,y domain=0:2*pi]
		({sqrt(1-x^2) * cos(deg(y))},
		 {sqrt( 1-x^2 ) * sin(deg(y))},
		 x);
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot[patch]
	table {
		x y 
		0 0 
		1 1 
		2 0
% empty lines do not hurt, they are ignored here:
		1 1 
		2 0 
		3 1 
		
		2 0 
		3 1 
		4 0 
		
	};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot[patch]
	table[point meta=\thisrow{c}] {
		x y c
		0 0 0.2
		1 1 0
		2 0 1
		
		1 1 0
		2 0 1
		3 1 0
		
		2 0 1
		3 1 0
		4 0 0.5
	};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot[patch,shader=interp]
	table[point meta=\thisrow{c}] {
		x y c
		0 0 0.2
		1 1 0
		2 0 1
		
		1 1 0
		2 0 1
		3 1 0
		
		2 0 1
		3 1 0
		4 0 0.5
	};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot[patch,shader=interp]
	table[point meta=\thisrow{c}] {
		x y c
		0 0 0.2
		1 1 0
		2 0 1
		
		1 1 0
		2 0 -1
		3 1 0
		
		2 0 0.5
		3 1 1
		4 0 0.5
	};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot[patch,table/row sep=\\,patch table={%
		0 1 2\\
		1 2 3\\
		4 3 5\\
	}]
	table[row sep=\\,point meta=\thisrow{c}] {
		x y c  \\
		0 0 0.2\\% 0
		1 1 0  \\% 1
		2 0 1  \\% 2
		3 1 0  \\% 3
		2 0 0.5\\% 4
		4 0 0.5\\% 5
	};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	% this uses per-patch color data:
	\addplot[patch,table/row sep=\\,
	patch table with point meta={%
		0 1 2 100\\
		1 2 3 10\\
		4 3 5 0\\
	}]
	table[row sep=\\] {
		x y \\
		0 0 \\% 0
		1 1 \\% 1
		2 0 \\% 2
		3 1 \\% 3
		2 0 \\% 4
		4 0 \\% 5
	};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	% this uses n per-patch color values:
	\addplot[patch,shader=interp,
	table/row sep=\\,
	patch table with individual point meta={%
		0 1 2 100 100 100\\% V_0 V_1 V_2 C_0 C_1 C_2
		1 2 3 10 0 50\\
		4 3 5 0 0 100\\
	}]
	table[row sep=\\] {
		x y \\
		0 0 \\% 0
		1 1 \\% 1
		2 0 \\% 2
		3 1 \\% 3
		2 0 \\% 4
		4 0 \\% 5
	};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[axis equal]
% FokkerDrI_layer_0.patches.dat contains:
% # each row is one vertex; three consecutive 
% # vertices make one triangle (patch)
% 105.577	-19.7332	2.85249	
% 88.9233	-21.1254	13.0359	
% 89.2104	-22.1547	1.46467	
% # end of facet 0
% 105.577	-19.7332	2.85249	
% 105.577	-17.2161	12.146	
% 88.9233	-21.1254	13.0359	
% # end of facet 1
\addplot3[patch] 
	file
	{plotdata/FokkerDrI_layer_0.patches.dat};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
% FokkerDrI_layer_0.facetIdx.dat contains:
% # each row makes up one facet; it 
% # consists of 0-based indices into 
% # the vertex array
% 0	1	2 % triangle of vertices #0,#1 and #2
% 0	3	1 % triangle of vertices #0,#3 and #1	
% 3	4	1	
% 5	6	7	
% 6	8	7	
% 8	9	7	
% 8	10	9	
% ...
% while FokkerDrI_layer_0.vertices.dat contains
% 105.577	-19.7332	2.85249	% vertex #0
% 88.9233	-21.1254	13.0359	% vertex #1
% 89.2104	-22.1547	1.46467	% vertex #2
% 105.577	-17.2161	12.146	
% 105.577	-10.6054	18.7567	
% 105.577	7.98161	18.7567	
% 105.577	14.5923	12.146	
% ...
\addplot3[patch,shader=interp,
	patch table=
		{plotdata/FokkerDrI_layer_0.facetIdx.dat}] 
	file
	{plotdata/FokkerDrI_layer_0.vertices.dat};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[view/h=70]
% FokkerDrI_layer_0.patches.dat contains:
% # each row is one vertex; three consecutive 
% # vertices make one triangle (patch)
% 105.577	-19.7332	2.85249	
% 88.9233	-21.1254	13.0359	
% 89.2104	-22.1547	1.46467	
% # end of facet 0
% 105.577	-19.7332	2.85249	
% 105.577	-17.2161	12.146	
% 88.9233	-21.1254	13.0359	
% # end of facet 1
\addplot3[patch,mesh] 
	file
	{plotdata/FokkerDrI_layer_0.patches.dat};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[nodes near coords={(\coordindex)},
		title=Rectangle from matrix input]
	% note that surf implies 'patch type=rectangle'
	\addplot[surf,mesh/rows=2,patch type=rectangle] 
	coordinates {
		(0,0) (1,0) 
		(0,1) (1,1)
	};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[nodes near coords={(\coordindex)},
		title=Rectangle from patch input]
	\addplot[patch,patch type=rectangle] 
	coordinates {
		(0,0) (1,0) (1,1) (0,1)
	};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[nodes near coords={(\coordindex)}]
	\addplot[patch,patch type=triangle] 
	coordinates {
		(0,0) (1,0) (0,1)
	};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	Aligning at .......
\begin{tikzpicture}[baseline]
\begin{axis}[small,anchor=aninnernode.center]
	\addplot {sin(deg(x))};
	\node
		[pin=-90:(aninnernode),fill=black,circle,scale=0.3] 
		(aninnernode) at (axis cs:-2,0.75) {};
	\draw[help lines] (axis cs:-6,0.75) -- (axis cs:6,0.75);
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	Aligning at .......
\begin{tikzpicture}[baseline]
\begin{axis}[
	small,
	title={The function $\sin x$ is very pretty.},
	title style={name=MyTitleNode},
	anchor=MyTitleNode.base,
]
	\addplot {sin(deg(x))};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	% 1. Unaligned:
\pgfplotsset{domain=-1:1}
\begin{tikzpicture}
	\begin{axis}[xlabel=A normal sized $x$ label]
	\addplot[smooth,blue,mark=*] {x^2};
	\end{axis}
\end{tikzpicture}%
\hspace{0.15cm}
\begin{tikzpicture}
	\begin{axis}[xlabel={$\displaystyle \sum_{i=0}^N n_i $ }]
	\addplot[smooth,blue,mark=*] {x^2};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	% 2. Aligned:
\pgfplotsset{domain=-1:1}
\begin{tikzpicture}[baseline]
	\begin{axis}[xlabel=A normal sized $x$ label]
	\addplot[smooth,blue,mark=*] {x^2};
	\end{axis}
\end{tikzpicture}%
\hspace{0.15cm}
\begin{tikzpicture}[baseline]
	\begin{axis}[xlabel={$\displaystyle \sum_{i=0}^N n_i $ }]
	\addplot[smooth,blue,mark=*] {x^2};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\pgfplotsset{every axis/.append style={
cycle list={
	{red,only marks,mark options={
		fill=red,scale=0.8},mark=*},
	{black,only marks,mark options={
		fill=black,scale=0.8},mark=square*}}}}
\begin{axis}[width=4cm,scale only axis,
	name=main plot]
\addplot file 
	{plotdata/pgfplots_scatterdata1.dat};
\addplot file 
	{plotdata/pgfplots_scatterdata2.dat};
\addplot[blue] coordinates {
	(0.093947,	-0.011481)
	(0.101957,	0.494273)
	(0.109967,	1.000027)};
\end{axis}
\begin{axis}[
	at={(main plot.below south west)},yshift=-0.1cm,
	anchor=north west,
	width=4cm,scale only axis,height=0.8cm,
	ytick=\empty]
\addplot file 
  {plotdata/pgfplots_scatterdata1_latent.dat};
\addplot file 
  {plotdata/pgfplots_scatterdata2_latent.dat};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotsset{
	small,
	title=Trimmed bounding boxes
}
\begin{center}
\begin{tabular}{rl}
	\begin{tikzpicture}[baseline,trim axis left]
		\begin{axis}
			\addplot {x};
		\end{axis}
	\end{tikzpicture}
	&
	\begin{tikzpicture}[baseline,trim axis right]
	\begin{axis}[
		ylabel={$f(x)=x^2$},
		yticklabel pos=right,
		ylabel style={font=\Huge}]
		\addplot {x^2};
	\end{axis}
	\end{tikzpicture}
	\\
	%
	\begin{tikzpicture}[baseline,trim axis left]
	\begin{axis}[xlabel=$x$,xlabel style={font=\Huge}]
		\addplot {x^3};
	\end{axis}
	\end{tikzpicture}%
	&
	\begin{tikzpicture}[baseline,trim axis right]
	\begin{axis}[yticklabel pos=right]
		\addplot {x^4};
	\end{axis}
	\end{tikzpicture}%
	\\
\end{tabular}%
\end{center}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\pgfplotsset{small}
	\matrix {
		\begin{axis}
			\addplot {x};
		\end{axis}
		&
		% differently large labels are aligned automatically:
		\begin{axis}[ylabel={$f(x)=x^2$},ylabel style={font=\Huge}]
			\addplot {x^2};
		\end{axis}
		\\
		%
		\begin{axis}[xlabel=$x$,xlabel style={font=\Huge}]
			\addplot {x^3};
		\end{axis}
		&
		\begin{axis}
			\addplot {x^4};
		\end{axis}
		\\
	};
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}%
   \begin{axis}[
      title=A title,
      ylabel style={overlay},
      yticklabel style={overlay},
      xlabel={$x$},
      ylabel={$y$},
      legend style={at={(0.5,0.97)},
         anchor=north,legend columns=-1},
      domain=-2:2
   ]
   \addplot {x^2};
   \addplot {x^3};
   \addplot {x^4};
   \legend{$x^2$,$x^3$,$x^4$}
   \end{axis}
\end{tikzpicture}%
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
   \begin{axis}[
      domain=0:6.2832,samples=200,
      legend style={
         overlay,
         at={(-0.5,0.5)},
         anchor=center},
      every axis plot post/.append style={mark=none},
      enlargelimits=false]
   \addplot {sin(deg(x)+3)+rand*0.05};
   \addplot {cos(deg(x)+2)+rand*0.05};
   \legend{Signal 1,Signal 2}
   \end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\setlength{\fboxsep}{0pt}%
\fbox{%
\begin{tikzpicture}%
	\begin{axis}[
		title=A title,
		xlabel={$x$},
		ylabel={$y$},
		legend style={at={(0.5,0.97)},
			anchor=north,legend columns=-1},
		domain=-2:2
	]
	\addplot {x^2};
	\addplot {x^3};
	\addplot {x^4};
	\legend{$x^2$,$x^3$,$x^4$}
	\end{axis}
	\pgfresetboundingbox
	\path
			  (current axis.south west)
	rectangle (current axis.north east);
\end{tikzpicture}%
}%
 
	
		
		[.tex]
		[.pdf]
	
	\setlength{\fboxsep}{0pt}%
\fbox{%
\begin{tikzpicture}%
	\begin{pgfinterruptboundingbox}
	\begin{axis}[
		title=A title,
		xlabel={$x$},
		ylabel={$y$},
		legend style={at={(0.5,0.97)},
			anchor=north,legend columns=-1},
		domain=-2:2
	]
	\addplot {x^2};
	\addplot {x^3};
	\addplot {x^4};
	\legend{$x^2$,$x^3$,$x^4$}
	\end{axis}
	\end{pgfinterruptboundingbox}
	\useasboundingbox 
			  (current axis.below south west)
	rectangle (current axis.above north east);
\end{tikzpicture}%
}%
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[ymin=0,ymax=1,enlargelimits=false]
\addplot
	[blue!80!black,fill=blue,fill opacity=0.5] 
coordinates
{(0,0.1)    (0.1,0.15)  (0.2,0.5)   (0.3,0.62)
 (0.4,0.56) (0.5,0.58)  (0.6,0.65)  (0.7,0.6)
 (0.8,0.58) (0.9,0.55)  (1,0.52)} 
|- (axis cs:0,0) -- cycle;
\addplot
	[red,fill=red!90!black,opacity=0.5]
coordinates 
{(0,0.25)   (0.1,0.27)  (0.2,0.24)  (0.3,0.24)
 (0.4,0.26) (0.5,0.3)   (0.6,0.23)  (0.7,0.2)
 (0.8,0.15) (0.9,0.1)   (1,0.1)}
|- (axis cs:0,0) -- cycle;
\addplot[green!20!black] coordinates
	{(0,0.4) (0.2,0.75) (1,0.75)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
\addplot+[id=parable,domain=-5:5] 
	gnuplot{4*x**2 - 5} 
	node[pin=180:{$4x^2-5$}]{};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot3[surf,domain=0:360,samples=40] 
		{sin(x)*sin(y)};	
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[colormap/redyellow,colorbar]
	\addplot3[surf,
		domain=0:360,samples=40] 
		{sin(x)*sin(y)};	
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[view={60}{30}]
    \addplot3[surf,shader=flat,
		samples=20,
        domain=-1:0,y domain=0:2*pi,
        z buffer=sort]
        ({sqrt(1-x^2) * cos(deg(y))},
		 {sqrt( 1-x^2 ) * sin(deg(y))},
		 x);
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{loglogaxis}
\addplot coordinates {
	(769,   1.6227e-04)
	(1793,  4.4425e-05)
	(4097,  1.2071e-05)
	(9217,  3.2610e-06)
	(2.2e5, 2.1E-6)
	(1e6,   0.00003341)
	(2.3e7, 0.00131415)
};
\end{loglogaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
\addplot {sin(deg(x))};
\end{axis}
\end{tikzpicture}
\begin{tikzpicture}
\begin{axis}
\addplot+[only marks] {sin(deg(x))};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
\addplot coordinates {
	(0,0)
	(0.5,1)
	(1,2)
};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
\addplot+[error bars/.cd,x dir=both,x explicit] 
coordinates {
	(0,0)   +- (0.1,0)
	(0.5,1) +- (0.4,0.2)
	(1,2)
	(2,5)   +- (1,0.1)
};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
\addplot+[scatter,scatter src=explicit] coordinates {
	 (900,1e-6) [1]
    (2600,5e-7) [2]
    (4000,7e-8) [3]
};
\end{axis}
\end{tikzpicture}
 
	\begin{tikzpicture}
\begin{loglogaxis}[
	xlabel=Dof,
	ylabel=$L_2$ error]
\addplot table[x=dof,y=L2] {datafile.dat};
\end{loglogaxis}
\end{tikzpicture}
 
	\begin{tikzpicture}
\begin{loglogaxis}[
	xlabel=Dof,
	ylabel=$L_\infty$ error]
\addplot table[x=dof,y=Lmax] {datafile.dat};
\end{loglogaxis}
\end{tikzpicture}
 
	\begin{tikzpicture}
\begin{loglogaxis}[
	xlabel=Dof,
	ylabel=$L_\infty$ error]
\addplot table[x=dof,y=Lmax] {
	dof     L2              Lmax            maxlevel
	5       8.31160034e-02  1.80007647e-01  2
	17      2.54685628e-02  3.75580565e-02  3
	49      7.40715288e-03  1.49212716e-02  4
	129     2.10192154e-03  4.23330523e-03  5
	321     5.87352989e-04  1.30668515e-03  6
	769     1.62269942e-04  3.88658098e-04  7
	1793    4.44248889e-05  1.12651668e-04  8
	4097    1.20714122e-05  3.20339285e-05  9
	9217    3.26101452e-06  8.97617707e-06  10
};
\end{loglogaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
	\addplot {x^2 + 4};
	\addplot {-5*x^3 - x^2};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
	\addplot+[domain=0:360]
		{sin(x)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
	\addplot+[domain=-pi:pi] 
		{sin(deg(x))};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{loglogaxis}[
		title={$\frac{1}{x^2}$}]
	\addplot[blue,domain=1:1e30] 
		{x^-2};
	\end{loglogaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{semilogyaxis}[
		title={$e^x$ logarithmically plotted}]
	\addplot[blue,domain=1:700] 
		{exp(x)};
	\end{semilogyaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset[columns={maxlevel,L2}]{plotdata/newexperiment1.dat}
\begin{tikzpicture}
	\begin{semilogyaxis}[
		xlabel=\texttt{maxlevel}$ + 10$
	]
	\addplot table
		[x expr=\thisrow{maxlevel}+10, y=L2] 
		{plotdata/newexperiment1.dat};
	\end{semilogyaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
\addplot 
	gnuplot[id=sin]{sin(x)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{semilogyaxis}
\addplot gnuplot
	[id=exp,domain=0:10]{exp(x)};
\end{semilogyaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
\addplot
	shell[prefix=pgfshell_,id=cos]{awk 'BEGIN{
		pi=3.14159; N=10;
		for(i=0;i<=N;i++) print i,cos(i/N*pi);}'};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
\addplot+[prefix=pgfshell_,id=replot]
	shell{cat pgfshell_cos.out};
	% just reprint the result from above
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[enlargelimits=false,axis on top]
		\addplot graphics
			[xmin=-3,xmax=3,ymin=-3,ymax=3] 
			{external1};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[axis on top,title=Graphics Import]
		\addplot graphics
			[xmin=0,xmax=1,ymin=0,ymax=1,
			% trim=left bottom right top
			includegraphics={trim=12 9 12 8,clip}]
			{external2};
		\addplot coordinates {(0,0) (1,1)};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[axis on top,title=Graphics Import]
	% provide options for the legend:
    \addplot[red,only marks,mark=*,mark size=1pt]
	graphics
        [xmin=0,xmax=1,ymin=0,ymax=1,
        % trim=left bottom right top
        includegraphics={trim=12 9 12 8,clip}]
        {external2};
    \addplot coordinates {(0,0) (1,1)};
	\legend{Scatter,Line}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[axis on top,title=Graphics Import]
		\addplot graphics
			% instead of the min/max things:
			[points={(0,1) (1,0)},
			% trim=left bottom right top
			includegraphics={trim=12 9 12 8,clip}]
			{external2};
		\addplot coordinates {(0,0) (1,1)};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	grid=both,minor tick num=1,
	xlabel=$x$,ylabel=$y$,
	]
\addplot3 graphics[
	points={% important
		(0,1,0) => (0,207-112) 
		(1,0,0) => (446,207-133)
		(0.5546,0.5042,1.825) => (236,207)
		(0,0,0) => (194,207-202)
	}] {plotdata/plotgraphics3dsurf.png};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	xmax=1.5,% extra limits
	grid=both,minor tick num=1,
	xlabel=$x$,ylabel=$y$,
	]
\addplot3[surf] % 'surf' is only used for the legend.
	graphics[
		points={
			(0,1,0) => (0,207-112) 
			(1,0,0) => (446,207-133)
			(0.5546,0.5042,1.825) => (236,207)
			(0,0,0) => (194,207-202)
	}] 
	{plotdata/plotgraphics3dsurf.png};
\addlegendentry{Graphics}
\addplot3+[only marks] coordinates {
	(0,1,0) (1,0,0) 
	(0.5546,0.5042,1.825) (0,0,0)
};
\addlegendentry{Scatter}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	grid=both,minor tick num=1,
	xlabel=$x$,ylabel=$y$,
	title={\centering
	  Geometry provided by Sven Gro\ss, Bonn\\
	  \url{http://www.igpm.rwth-aachen.de/DROPS}\\},
	title style={text width=6cm,font=\tiny},
]
	\addplot3 graphics[
		points={
			(-0.002625,0.002625,0) => (140,234)
			(0,0.00263,0.00263)    => (230,364)
			(0,-0.00263,-0.00263)  => (366,81)
			(0,-0.00263,0.00263)   => (366,276)
			(0.002625,0.002625,0.002625)
		}
	]
	{plotdata/risingdrop3d.png};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	height=8cm,width=7cm,% improve scaling manually
	grid=both,minor tick num=1,
	xlabel=$x$,ylabel=$y$,
	title={\centering
	  Geometry provided by Sven Gro\ss, Bonn\\
	  \url{http://www.igpm.rwth-aachen.de/DROPS}\\},
	title style={text width=6cm,font=\tiny},
]
	\addplot3 graphics[
		points={
			(-0.002625,0.002625,0) => (140,234)
			(0,0.00263,0.00263)    => (230,364)
			(0,-0.00263,-0.00263)  => (366,81)
			(0,-0.00263,0.00263)   => (366,276)
			(0.002625,0.002625,0.002625)
		}
	]
	{plotdata/risingdrop3d.png};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	grid=both,minor tick num=1,
	xlabel=$x$,ylabel=$y$,
	3d box,
]
	\addplot3 graphics[
		points={
			(1,1,1)    => (205,48)
			(10,1,10)  => (503,324)
			(1,1,4.044)=> (206,102)
			(10,10,10) => (390,398)
		}
	]
	{plotdata/plotgraphics3.png};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	% [See the TikZ manual if you'd like to learn about nodes and pins]
\begin{tikzpicture}
	\tikzset{
		every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny},
		small dot/.style={fill=black,circle,scale=0.3}
	}
	\begin{axis}[
		clip=false,
		title=How \texttt{axis description cs} works
	]
	\addplot {x};
	\node[small dot,pin=120:{$(0,0)$}]      at (axis description cs:0,0) {};
	\node[small dot,pin=-30:{$(1,1)$}]      at (axis description cs:1,1) {};
	\node[small dot,pin=-90:{$(1.03,0.5)$}] at (axis description cs:1.03,0.5) {};
	\node[small dot,pin=125:{$(0.5,0.5)$}]  at (axis description cs:0.5,0.5) {};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		legend entries={$x$,$x^2$},
		legend style={
			at={(1.03,0.5)},
			anchor=west
		}
	]
	\addplot {x};
	\addplot {x^2};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	% the same as above for 3D ...
% [See the TikZ manual if you'd like to learn about nodes and pins]
\begin{tikzpicture}
	\tikzset{
		every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny},
		small dot/.style={fill=black,circle,scale=0.3}
	}
	\begin{axis}[
		clip=false,
		title=How \texttt{axis description cs} works in 3D
	]
	\addplot3 coordinates {(-5,-5,-5) (5,5,5)};
	\draw[black!15] (axis description cs:0,0) rectangle (axis description cs:1,1);
	\node[small dot,pin=120:{$(0,0)$}]      at (axis description cs:0,0) {};
	\node[small dot,pin=-30:{$(1,1)$}]      at (axis description cs:1,1) {};
	\node[small dot,pin=-90:{$(1.03,0.5)$}] at (axis description cs:1.03,0.5) {};
	\node[small dot,pin=125:{$(0.5,0.5)$}]  at (axis description cs:0.5,0.5) {};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\tikzset{
	every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny},
	small dot/.style={fill=black,circle,scale=0.3}
}
\begin{tikzpicture}
\begin{axis}[
	clip=false,
	ticklabel style={draw=red},
	title=Positioning with \texttt{xticklabel cs}]
	\addplot {x};
	\node[small dot,pin=-90:{\texttt{xticklabel cs:0}}]     at (xticklabel cs:0) {};
	\node[small dot,pin=-90:{\texttt{xticklabel cs:0.5}}]   at (xticklabel cs:0.5) {};
	\node[small dot,pin=-90:{\texttt{xticklabel cs:1}}]     at (xticklabel cs:1) {};
	\node[small dot,pin=180:{\texttt{yticklabel cs:0}}]     at (yticklabel cs:0) {};
	\node[small dot,pin=180:{\texttt{yticklabel cs:0.5}}]   at (yticklabel cs:0.5) {};
	\node[small dot,pin=180:{\texttt{yticklabel cs:1}}]     at (yticklabel cs:1) {};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	% the same as above for 3D ...
\begin{tikzpicture}
	\tikzset{
		every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny},
		small dot/.style={fill=black,circle,scale=0.3}
	}
	\begin{axis}[
		ticklabel style={draw=red},
		clip=false,
		title=Positioning with \texttt{ticklabel cs} in 3D
	]
	\addplot3 coordinates {(-5,-5,-5) (5,5,5)};
	\node[small dot,pin=-90:{\texttt{xticklabel cs:0}}]     at (xticklabel cs:0) {};
	\node[small dot,pin=-90:{\texttt{xticklabel cs:0.5}}]   at (xticklabel cs:0.5) {};
	\node[small dot,pin=-90:{\texttt{xticklabel cs:1}}]     at (xticklabel cs:1) {};
	\node[small dot,pin=-45:{\texttt{yticklabel cs:0}}]     at (yticklabel cs:0) {};
	\node[small dot,pin=-45:{\texttt{yticklabel cs:0.5}}]   at (yticklabel cs:0.5) {};
	\node[small dot,pin=-45:{\texttt{yticklabel cs:1}}]     at (yticklabel cs:1) {};
	\node[small dot,pin=180:{\texttt{zticklabel cs:0}}]     at (zticklabel cs:0) {};
	\node[small dot,pin=180:{\texttt{zticklabel cs:0.5}}]   at (zticklabel cs:0.5) {};
	\node[small dot,pin=180:{\texttt{zticklabel cs:1}}]     at (zticklabel cs:1) {};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\tikzset{
	every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny},
	small dot/.style={fill=black,circle,scale=0.3}
}
\begin{tikzpicture}
	\begin{axis}[
		xticklabel style={draw=red},
		clip=false,
		title=\texttt{ticklabel cs} and its optional shift
	]
	\addplot3 coordinates {(-5,-5,-5) (5,5,5)};
	\draw[blue,thick,->]      (xticklabel cs:0,0)     -- (xticklabel cs:1,0);
	\draw[red,thick,->]       (xticklabel cs:0,5pt)   -- (xticklabel cs:1,5pt);
	\draw[magenta,thick,->]   (xticklabel cs:0,10pt)  -- (xticklabel cs:1,10pt);
	\draw[green,thick,->]     (xticklabel cs:0,15pt)  -- (xticklabel cs:1,15pt);
	\node[small dot,pin=0:{\texttt{xticklabel cs:1,0}}]      at (xticklabel cs:1,0) {};
	\node[small dot,pin=0:{\texttt{xticklabel cs:1,15pt}}]   at (xticklabel cs:1,15pt) {};
	\draw[blue,thick,->]      (xticklabel cs:0,0)     -- (xticklabel cs:0,15pt);
	\draw[blue,thick,->]      (xticklabel cs:1,0)     -- (xticklabel cs:1,15pt);
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		title=Without \texttt{near ticklabel},
		ylabel={$f(x)=x$},
		every axis y label/.style=
			{at={(ticklabel cs:0.5)},rotate=90,anchor=center},
		clip=false,% to display the \path below
		ylabel style={draw=red},
		yticklabel style={draw=red}
	]
		\addplot {x};
		% visualize the position:
		\fill (yticklabel cs:0.5) circle(2pt);
	\end{axis}
\end{tikzpicture}%
~
\begin{tikzpicture}
	\begin{axis}[
		title=With \texttt{near ticklabel},
		ylabel={$f(x)=x$},
		every axis y label/.style=
			{at={(ticklabel cs:0.5)},rotate=90,anchor=near ticklabel},
		clip=false,
		ylabel style={draw=red},
		yticklabel style={draw=red}
	]
		\addplot {x};
		\fill (yticklabel cs:0.5) circle(2pt);
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		xlabel=Variable 1,
		ylabel=Variable 2,
		zlabel=value,
		xlabel style={sloped like x axis},
		ylabel style={sloped}
	]
	\addplot3[surf] {y*x*(1-x)};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{loglogaxis}[
	xlabel=Dof,ylabel=Error,
	title={$\mu=0.1$, $\sigma=0.2$}]
	\addplot coordinates {
		(5,    8.312e-02)
		(17,   2.547e-02)
		(49,   7.407e-03)
		(129,  2.102e-03)
		(321,  5.874e-04)
		(769,  1.623e-04)
		(1793, 4.442e-05)
		(4097, 1.207e-05)
		(9217, 3.261e-06)
	};
\end{loglogaxis}
\end{tikzpicture}%
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotsset{every axis/.append style={
	extra description/.code={
		\node at (0.5,0.5) {Center!};
	}}}
\begin{tikzpicture}
	\begin{axis}
	\addplot {x^2};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
\addplot[smooth,mark=*,blue] coordinates {
	(0,2)
	(2,3)
	(3,1)
};
\addlegendentry{Case 1}
\addplot[smooth,color=red,mark=x]
	coordinates {
		(0,0)
		(1,1)
		(2,1)
		(3,2)
	};
\addlegendentry{Case 2}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
	\foreach \p in {1,2,3} {
	  \addplot {x^\p};
	  \addlegendentryexpanded{$x^\p$}
	}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[legend entries={$x$,$x^2$}]
	\addplot {x};
	\addplot {x^2};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[legend entries={$x$,$x^2$}]
	\addplot {x};
	\addplot {x^2};
	\legend{$a$,$b$}% overrides the option
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[legend entries={$x$,[red]$x^2$,$x^3$}]
	\addplot {x};
	\addplot {x^2};
	\addplot {x^3};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	% this modifies 'every axis legend':
	legend style={font=\large}
]
\addplot coordinates {(0,0) (1,1)};
\addplot coordinates {(0,1) (1,2)};
\addplot coordinates {(0,2) (1,3)};
\legend{$l_1$,$l_2$,$l_3$}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	% align right:
	legend style={
		cells={anchor=east},
		legend pos=outer north east,
	}
]
\addplot coordinates {(0,0) (1,1)};
\addplot coordinates {(0,1) (1,2)};
\addplot coordinates {(0,2) (1,3)};
\legend{$l_1$, legend $2$,$l_3$}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	% similar placement as previous example:
\pgfplotsset{every axis legend/.append style={
		at={(1.02,1)},
		anchor=north west}}
\begin{tikzpicture}
\begin{axis}
\addplot coordinates {(0,0) (1,1)};
\addplot coordinates {(0,1) (1,2)};
\addplot coordinates {(0,2) (1,3)};
\legend{$l_1$,$l_2$,$l_3$}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\pgfplotsset{every axis legend/.append style={
		at={(0.5,1.03)},
		anchor=south}}
\begin{axis}[legend columns=4]
\addplot coordinates {(0,0) (1,1)};
\addplot coordinates {(0,1) (1,2)};
\addplot coordinates {(0,2) (1,3)};
\legend{$l_1$,$l_2$,$l_3$}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	legend style={
		at={(1,0.5)},
		anchor=east}]
\addplot coordinates {(0,0) (1,1)};
\addplot coordinates {(0,1) (1,2)};
\addplot coordinates {(0,2) (1,3)};
\legend{$l_1$,$l_2$,$l_3$}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[tiny,title=With legend box]
\addplot[blue]{x};
\addplot[red]{2*x};
\legend{$x$,$2x$}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[tiny,title=Without legend box,
	legend style={draw=none}]
\addplot[blue]{x};
\addplot[red]{2*x};
\legend{$x$,$2x$}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[legend pos=south west]
\addplot coordinates {(0,0) (1,1)};
\addplot coordinates {(0,1) (1,2)};
\addplot coordinates {(0,2) (1,3)};
\legend{$l_1$,$l_2$,$l_3$}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[legend pos=south east]
\addplot coordinates {(0,0) (1,1)};
\addplot coordinates {(0,1) (1,2)};
\addplot coordinates {(0,2) (1,3)};
\legend{$l_1$,$l_2$,$l_3$}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[legend pos=north east]
\addplot coordinates {(0,0) (1,1)};
\addplot coordinates {(0,1) (1,2)};
\addplot coordinates {(0,2) (1,3)};
\legend{$l_1$,$l_2$,$l_3$}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[legend pos=north west]
\addplot coordinates {(0,0) (1,1)};
\addplot coordinates {(0,1) (1,2)};
\addplot coordinates {(0,2) (1,3)};
\legend{$l_1$,$l_2$,$l_3$}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[legend pos=outer north east]
\addplot coordinates {(0,0) (1,1)};
\addplot coordinates {(0,1) (1,2)};
\addplot coordinates {(0,2) (1,3)};
\legend{$l_1$,$l_2$,$l_3$}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[legend cell align=left,
	legend pos=outer north east]
\addplot coordinates {(0,0) (1,1)};
\addplot coordinates {(0,1) (1,2)};
\addplot coordinates {(0,2) (1,3)};
\legend{a,fine,legend}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[legend cell align=center,
	legend pos=outer north east]
\addplot coordinates {(0,0) (1,1)};
\addplot coordinates {(0,1) (1,2)};
\addplot coordinates {(0,2) (1,3)};
\legend{a,fine,legend}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[legend cell align=right,
	legend pos=outer north east]
\addplot coordinates {(0,0) (1,1)};
\addplot coordinates {(0,1) (1,2)};
\addplot coordinates {(0,2) (1,3)};
\legend{a,fine,legend}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[legend image post style={mark=*}]
	\addplot+[only marks,forget plot] 
		coordinates {(0.5,0.75) (1,1) (1.5,0.75)};
	\addplot+[mark=none,smooth,domain=0:2] 
		{-x*(x-2)};
	\addlegendentry{Parabola}
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	% \usetikzlibrary{patterns}
\begin{tikzpicture}
\begin{axis}[area legend,
	axis x line=bottom,
	axis y line=left,
	domain=0:1,
	legend style={at={(0.03,0.97)},
		anchor=north west},
	axis on top,xmin=0]
\addplot[pattern=crosshatch dots,
	pattern color=blue,draw=blue,
	samples=500] 
	{sqrt(x)}	\closedcycle;
\addplot[pattern=crosshatch,
	pattern color=blue!30!white,
	draw=blue!30!white]
	{x^2} \closedcycle;
\addplot[red,line legend] coordinates {(0,0) (1,1)};
\legend{$\sqrt x$,$x^2$,$x$}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[legend pos=north west]
	\addplot {x^3};
	\addplot[ybar,fill=red,draw=red!60,
		ybar legend,mark=none,samples=5] 
		{-30*(x +4)};
	\legend{first,second}
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[legend pos=outer north east]
	\addplot3[surf,samples=9,domain=0:1] 
		{(1-abs(2*(x-0.5))) * (1-abs(2*(y-0.5)))};
	\addlegendentry{$\phi_x \phi_y$}
	\addplot3+[ultra thick] coordinates {(0,0,0) (0.5,0,1) (1,0,0)};
	\addlegendentry{$\phi_x $}
	\addplot3+[ultra thick] coordinates {(1,0,0) (1,0.5,1) (1,1,0)};
	\addlegendentry{$\phi_y $}
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[reverse legend]
	\addplot {x};
	\addlegendentry{$x$}
	\addplot {x^2};
	\addlegendentry{$x^2$}
	\addplot {x^3};
	\addlegendentry{$x^3$}
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		legend columns=2,
		legend pos=outer north east,
		cycle multi list={%
			color list\nextlist
			[2 of]mark list
		}]
	\addplot {-x};   \addlegendentry{A1}
	\addplot {-x+1}; \addlegendentry{A2}
	\addplot {-1.2*x + 4};  \addlegendentry{B1}
	\addplot {-1.2*x + 5};  \addlegendentry{B2}
	\addplot {-1.3*x + 9};  \addlegendentry{C1}
	\addplot {-1.4*x + 10}; \addlegendentry{C2}
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		transpose legend,
		legend columns=2,
		legend style={at={(0.5,-0.1)},anchor=north},
		cycle multi list={%
			color list\nextlist
			[2 of]mark list
		}]
	\addplot {-x};   \addlegendentry{A1}
	\addplot {-x+1}; \addlegendentry{A2}
	\addplot {-1.2*x + 4};  \addlegendentry{B1}
	\addplot {-1.2*x + 5};  \addlegendentry{B2}
	\addplot {-1.3*x + 9};  \addlegendentry{C1}
	\addplot {-1.4*x + 10}; \addlegendentry{C2}
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}[baseline]
\begin{axis}
	\addplot+[only marks,
			samples=15,
			error bars/y dir=both,
			error bars/y fixed=2.5]
		{3*x+2.5*rand};
	\label{pgfplots:label1}
	\addplot+[mark=none] {3*x};
	\label{pgfplots:label2}
	\addplot {4*cos(deg(x))};
	\label{pgfplots:label3}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotsset{footnotesize,samples=10}
\begin{center}% note that \centering uses less vspace...
\begin{tikzpicture}
	\begin{axis}[
		legend columns=-1,
		legend entries={$(x+0)^k$;,$(x+1)^k$;,$(x+2)^k$;,$(x+3)^k$},
		legend to name=named,
		title={$k=1$}]
	\addplot {x};
	\addplot {x+1};
	\addplot {x+2};
	\addplot {x+3};
	\end{axis}
\end{tikzpicture}
%
\begin{tikzpicture}
	\begin{axis}[title={$k=2$}]
	\addplot {x^2};
	\addplot {(x+1)^2};
	\addplot {(x+2)^2};
	\addplot {(x+3)^2};
	\end{axis}
\end{tikzpicture}
%
\begin{tikzpicture}
	\begin{axis}[title={$k=3$}]
	\addplot {x^3};
	\addplot {(x+1)^3};
	\addplot {(x+2)^3};
	\addplot {(x+3)^3};
	\end{axis}
\end{tikzpicture}
\\
\ref{named}
\end{center}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{semilogyaxis}[
	domain=0:4,
]
	\addplot {x};   \addlegendentry{$x$}
	\addplot {x^2}; \addlegendentry{$x^2$}
	\addplot {x^3}; \addlegendentry{$x^3$}
	\addlegendimage{empty legend}
	\addlegendentry{---}
	\addplot {x^(-1)}; \addlegendentry{$x^{-1}$}
	\addplot {x^(-2)}; \addlegendentry{$x^{-2}$}
	\addplot {x^(-3)}; \addlegendentry{$x^{-3}$}
\end{semilogyaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{semilogyaxis}[
	domain=0:4,
]
	\addplot {x};   \addlegendentry{$x$}
	\addplot {x^2}; \addlegendentry{$x^2$}
	\addplot {x^3}; \addlegendentry{$x^3$}
	\addlegendimage{empty legend}
	\addlegendentry[text width=25pt,text depth=]
		{Neg. Sign:}
	\addplot {x^(-1)}; \addlegendentry{$x^{-1}$}
	\addplot {x^(-2)}; \addlegendentry{$x^{-2}$}
	\addplot {x^(-3)}; \addlegendentry{$x^{-3}$}
\end{semilogyaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{semilogyaxis}[
	domain=0:4,
	legend entries={%
	  $x$,$x^2$,$x^3$,%
	  {[text width=25pt,text depth=]Neg. Sign:},%
	  $x^{-1}$,$x^{-2}$,$x^{-3}$},
	% same effect:
	% legend style={
	% 	nodes={text width=25pt,text depth=}}
]
	\addplot {x}; 
	\addplot {x^2};
	\addplot {x^3};
	\addlegendimage{empty legend}
	\addplot {x^(-1)};
	\addplot {x^(-2)};
	\addplot {x^(-3)}; 
\end{semilogyaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	xlabel=$x$,ylabel=$\sin x$]
	\addplot[blue,mark=none,
		 domain=-10:0,samples=40]
		{sin(deg(x))};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	axis x line=middle,
	axis y line=right,
	ymax=1.1, ymin=-1.1,
	xlabel=$x$,ylabel=$\sin x$
]
	\addplot[blue,mark=none,
		 domain=-10:0,samples=40]
		{sin(deg(x))};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	axis x line=bottom,
	axis y line=left,
	xlabel=$x$,ylabel=$\sqrt{|x|}$
]
\addplot[blue,mark=none,
	 domain=-4:4,samples=501]
	{sqrt(abs(x))};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	minor tick num=3,
	axis y line=center,
	axis x line=middle,
	xlabel=$x$,ylabel=$\sin x$
	]
	\addplot[smooth,blue,mark=none,
		 domain=-5:5,samples=40] 
		{sin(deg(x))};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	minor tick num=3,
	axis y line=left,
	axis x line=middle,
	xlabel=$x$,ylabel=$\sin x$
	]
	\addplot[smooth,blue,mark=none,
		 domain=-5:5,samples=40] 
		{sin(deg(x))};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	minor tick num=1,
	axis x line=middle,
	axis y line=middle,
	every inner x axis line/.append style=
		{|->>},
	every inner y axis line/.append style=
		{|->>},
	xlabel=$x$,ylabel=$y^3$
]
\addplot[blue,domain=-3:5] {x^3};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	separate axis lines, % important !
	every outer x axis line/.append style=
		{-stealth},
	every outer y axis line/.append style=
		{-stealth},
]
\addplot[blue,id=DoG,
		samples=100,
		domain=-15:15] 
  gnuplot{1.3*exp(-x**2/10) - exp(-x**2/20)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	separate axis lines,
	every outer x axis line/.append style=
		{-stealth,red},
	every outer y axis line/.append style=
		{-stealth,green!30!black},
]
\addplot[blue,
		samples=100,
		domain=-15:15] 
	{1.3*exp(0-x^2/10) - exp(0-x^2/20)};
  % Unfortunately, there is a bug in PGF 2.00
  % something like exp(-10^2)
  % must be written as exp(0-10^2) :-(
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	separate axis lines=false,
	every outer x axis line/.append style=
		{-stealth,red},
	every outer y axis line/.append style=
		{-stealth,green!30!black},
]
\addplot[blue,id=DoG,
		samples=100,
		domain=-15:15] 
  gnuplot{1.3*exp(-x**2/10) - exp(-x**2/20)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
  \begin{axis}[
    scale only axis,
    xmin=-5,xmax=5,
    axis y line*=left,% the '*' avoids arrow heads
    xlabel=$x$,
    ylabel=First ordinate]
  \addplot {x^2};
  \end{axis}
  
  \begin{axis}[
    scale only axis,
    xmin=-5,xmax=5,
    axis y line*=right,
    axis x line=none,
    ylabel=Second ordinate]
  \addplot[red] {3*x};
  \end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	% \usepackage{textcomp}
\begin{tikzpicture}
  \begin{axis}[
    scale only axis,
    xmin=-5,xmax=5,
    axis y line*=left,%'*' avoids arrow heads
    xlabel=$x$,
    ylabel=Absolute]
  \addplot {x^2};
  \end{axis}
  
  \begin{axis}[
    scale only axis,
    xmin=-5,xmax=5,
    ymin=0,ymax=1000,
    yticklabel=
{$\pgfmathprintnumber{\tick}$\textperthousand},
    axis y line*=right,
    axis x line=none,
    ylabel=per thousand]
  \end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	axis x line=bottom,
	axis x discontinuity=parallel,
	axis y line=left,
	xmin=360, xmax=600,
	ymin=0, ymax=7,
 	enlargelimits=false
]
	\addplot coordinates {
		(420,2)
		(500,6)
		(590,4)
	};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	axis x line=bottom,
	axis y line=center,
	tick align=outside,
	axis y discontinuity=crunch,
	ymin=95, enlargelimits=false
]
	\addplot[blue,mark=none,
		 domain=-4:4,samples=20] 
		{x*x+x+104};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	axis x line=bottom,
	axis y line=center,
	tick align=outside,
	axis y discontinuity=crunch,
	xtickmax=3,
	ytickmin=110,
	ymin=95, enlargelimits=false
]
	\addplot[blue,mark=none,
		 domain=-4:4,samples=20] 
		{x*x+x+104};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		hide x axis,
		hide y axis,
		title={$x^2\cos(x)$}]
	\addplot {cos(x)*x^2};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		hide x axis,
		axis y line=left,
		title={$x^2\cos(x)$}]
	\addplot {cos(x)*x^2};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[colorbar]
		\addplot[mesh,ultra thick] {x};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[colorbar,colormap/greenyellow]
		\addplot[mesh,ultra thick] {x};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[colorbar horizontal]
		\addplot[mesh,ultra thick] {x};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[colorbar right]
	\addplot[mesh,thick,samples=150,domain=0.1:3] 
		{1/x};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[colorbar left]
	\addplot[mesh,thick,samples=150] 
		{x*sin(deg(4*x))};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[colorbar horizontal]
	\addplot[only marks,scatter,
		scatter src={mod(\coordindex,15)},samples=150] 
		{rand};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	colorbar horizontal, 
	colorbar style={
	  at={(0.5,1.03)},anchor=south,
	  xticklabel pos=upper
	},
	title style={yshift=1cm},
	title=Customization: ``colorbar top'']
	\addplot[mesh,thick,samples=150,domain=0.1:3] 
		{x};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	colorbar horizontal, 
	colorbar style={
	  at={(1,1.03)},anchor=south east,
	  width=0.5*
	    \pgfkeysvalueof{/pgfplots/parent axis width},
	  xticklabel pos=upper,
	},
	title style={yshift=1cm},
	title=More Customization: ``colorbar top'']
	\addplot[mesh,thick,samples=150,domain=0.1:3] 
		{x};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		view/az=45,
		colorbar,
		colorbar/width=2cm,
		colormap/blackwhite]
	\addplot3[surf,domain=0:1,y domain=-3:3] {x*(1-x)*tanh(y)};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[colorbar sampled]
	\addplot[mesh,samples=40] {sin(deg(x))};	
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[colorbar sampled,colorbar style={samples=8}]
	\addplot[mesh,samples=40] {sin(deg(x))};	
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[colorbar sampled line]
	\addplot+[scatter] {sin(deg(x))};	
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotsset{footnotesize,samples=10, domain=0:1,point meta min=0, point meta max=1}
\begin{center}% note that \centering uses less vspace...
\begin{tikzpicture}
	\begin{axis}[colorbar,colorbar horizontal,colorbar to name={storedcolorbar}]
	\addplot[scatter,only marks,mark=*] {rnd};
	\end{axis}
\end{tikzpicture}
%
\begin{tikzpicture}
	\begin{axis}
	\addplot+[domain=0:1,mark=none,mesh] {x^2};
	\end{axis}
\end{tikzpicture}
%
\begin{tikzpicture}
	\begin{axis}[view={0}{90}]
	\addplot3[surf] {x*y};
	\end{axis}
\end{tikzpicture}
\\
\ref{storedcolorbar}
\end{center}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[normalsize,
		title=A ``normalsize'' figure,
		xlabel=The $x$ axis,
		ylabel=The $y$ axis,
		minor tick num=1,
		legend entries={Leg}]
		\addplot {max(4*x,7*x)};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[small,
		title=A ``small'' figure,
		xlabel=The $x$ axis,
		ylabel=The $y$ axis,
		minor tick num=1,
		legend entries={Leg}]
		\addplot {x^2};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[footnotesize,
		title=A ``footnotesize'' figure,
		xlabel=The $x$ axis,
		ylabel=The $y$ axis,
		minor tick num=1,
		legend entries={Leg}]
		\addplot+[const plot]
			coordinates {
			(0,0) (1,1) (3,3) (5,10)
		};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[tiny,
		title=A ``tiny'' figure,
		xlabel=The $x$ axis,
		ylabel=The $y$ axis,
		minor tick num=1,
		legend entries={Leg}]
		\addplot+[const plot]
			coordinates {
			(0,0) (1,1) (3,3) (5,10)
		};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot {x^2+2} \closedcycle;
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot+[fill] {x^2+2} \closedcycle;
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[stack plots=y]
	\addplot+[fill] coordinates 
		{(0,1) (1,1) (2,2) (3,2)} \closedcycle;
	\addplot+[fill] coordinates 
		{(0,1) (1,1) (2,2) (3,2)} \closedcycle;
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot coordinates 
		{(0,1) (1,2) (0,3) (-1,2)};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot coordinates 
		{(0,1) (1,2) (0,3) (-1,2)} --cycle;
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot+[fill] coordinates 
		{(0,1) (1,2) (0,3) (-1,2)} --cycle;
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[x filter/.code=
	{\pgfmathadd{#1}{0.5}}]
\addplot coordinates {
	(4,0)
	(6,1)
};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	samples=20,
	x filter/.code={
		\ifnum\coordindex>4
			\ifnum\coordindex<11
				\def\pgfmathresult{}
			\fi
		\fi
	}]
\addplot {x^2};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	samples=20,
	skip coords between index={5}{11},
	skip coords between index={15}{18}]
\addplot {x^2};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	restrict y to domain=-10:10,
	samples=1000,
	% some fine-tuning for the display:
	width=10cm, height=210pt,
	xmin=-4.7124, xmax=4.7124,
	xtick={-4.7124,-1.5708,...,10},
	xticklabels={$-\frac32 \pi$,$-\pi/2$,$\pi/2$,$\frac32 \pi$},
	axis x line=center,
	axis y line=center]
\addplot[blue] gnuplot[id=tangens,domain=-1.5*pi:1.5*pi] {tan(x)};
\legend{$\tan(x)$}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
\addplot+[error bars/.cd,
	y dir=plus,y explicit]
coordinates {
	(0,0)     +- (0.5,0.1) 
	(0.1,0.1) +- (0.05,0.2)
	(0.2,0.2) +- (0,0.05)
	(0.5,0.5) +- (0.1,0.2)
	(1,1)     +- (0.3,0.1)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
\addplot+[error bars/.cd,
	y dir=both,y explicit,
	x dir=both,x fixed=0.05,
	error mark=diamond*]
coordinates {
	(0,0)     +- (0.5,0.1) 
	(0.1,0.1) +- (0.05,0.2)
	(0.2,0.2) +- (0,0.05)
	(0.5,0.5) +- (0.1,0.2)
	(1,1)     +- (0.3,0.1)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset{pgfplots.testtable2.dat}
\begin{tikzpicture}
\begin{loglogaxis}
\addplot+[error bars/.cd,
	x dir=both,x fixed relative=0.5,
	y dir=both,y explicit relative,
	error mark=triangle*]
	table[x=x,y=y,y error=errory] 
	{pgfplots.testtable2.dat};
\end{loglogaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[enlargelimits=false]
\addplot[red,mark=*] 
	plot[error bars/.cd,
	y dir=minus,y fixed relative=1,
	x dir=minus,x fixed relative=1,
	error mark=none,
	error bar style={dotted}]
coordinates
	{(0,0) (0.1,0.1) (0.2,0.2) 	
	 (0.5,0.5) (1,1)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{loglogaxis}[
	grid=both,
	tick align=outside,
	tickpos=left]
\addplot coordinates 
	{(100,1e-4) (500,1e-5) (1000,3e-6)};
\addplot coordinates 
	{(100,1e-5) (500,4e-6) (1000,2e-6)};
\end{loglogaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\tikzstyle{every pin}=[fill=white,
	draw=black,
	font=\footnotesize]
\begin{tikzpicture}
	\begin{loglogaxis}[
		xlabel={\textsc{Dof}},
		ylabel={$L_2$ Error}]
	\addplot coordinates {
		(11,     6.887e-02)
		(71,     3.177e-02)
		(351,    1.341e-02)
		(1471,   5.334e-03)
		(5503,   2.027e-03)
		(18943,  7.415e-04)
		(61183,  2.628e-04)
		(187903, 9.063e-05)
		(553983, 3.053e-05)
	};
	\node[coordinate,pin=above:{Bad!}] 
		at (axis cs:5503,2.027e-03) {};
	\node[coordinate,pin=left:{Good!}] 
		at (axis cs:187903,9.063e-05)	{};
	\end{loglogaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{loglogaxis}[
	xlabel=\textsc{Dof},
	ylabel=$L_2$ Error
]
\draw 
		(axis cs:1793,4.442e-05)
	|-  (axis cs:4097,1.207e-05)
	node[near start,left] 
	{$\frac{dy}{dx} = -1.58$};
\addplot coordinates {
	(5,    8.312e-02)
	(17,   2.547e-02)
	(49,   7.407e-03)
	(129,  2.102e-03)
	(321,  5.874e-04)
	(769,  1.623e-04)
	(1793, 4.442e-05)
	(4097, 1.207e-05)
	(9217, 3.261e-06)
};
\end{loglogaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
	\draw[red,-stealth] 
		(axis cs:1000,0) 
		-- % = line-to
	 	++ % = calculate a vector sum
	    (axis direction cs:1000,0);
	\addplot [only marks,mark=*] 
		coordinates { (1000,0) (2000,1) };
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
	\addplot3[surf] {x^2 - y^2};
	\draw  (rel axis cs:0,0,1) 
		-- (rel axis cs:1,1,1);
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	xlabel=$x$,
	ylabel=$y$,
	zlabel=$z$,
	every axis x label/.style={
		at={(rel axis cs:0.5,-0.15,-0.15)}},
	every axis y label/.style={
		at={(rel axis cs:1.15,0.5,-0.15)}},
	every axis z label/.style={
		at={(rel axis cs:-0.15,-0.15,0.5)}},
]
	\addplot3[surf] {x*(1-x)*y};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot[blue,domain=0:360] {sin(x)} 
	[yshift=8pt]
		node[pos=0] {$0$} 
		node[pos=0.25] {$\pi/2$}
		node[pos=0.5] {$\pi$}
		node[pos=0.75] {$3/2\pi$}
		node[pos=1] {$2\pi$}
	;
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[title=Snap to nearest for scatter plots]
\addplot+[only marks] 
	coordinates {(0,0) (1,1) (2,2) (3,3)} 
	node[pos=0,   pin=0  :0   ] {}
	node[pos=0.1, pin=90 :0.1 ] {}
	node[pos=0.2, pin=200:0.2 ] {}
	node[pos=0.3, pin=135:0.3 ] {}
	node[pos=0.4, pin=0  :0.4 ] {}
	node[pos=0.5, pin=60 :0.5 ] {}
	node[pos=0.75,pin=180:0.75] {}
	node[pos=1,   pin=90 :1   ] {}
;
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot[blue,domain=0:360,samples=31] {sin(x)} 
	[every node/.style={yshift=8pt},sloped]
		node[pos=0] {$0$} 
		node[pos=0.25] {$\pi/2$}
		node[pos=0.5] {$\pi$}
		node[pos=0.75] {$3/2\pi$}
		node[pos=1] {$2\pi$}
	;
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	% same as above with different number of samples
\begin{tikzpicture}
	\begin{axis}
	\addplot[blue,domain=0:360,samples=25] {sin(x)} 
	[every node/.style={yshift=8pt},sloped]
		node[pos=0] {$0$} 
		node[pos=0.25] {$\pi/2$}
		node[pos=0.5] {$\pi$}
		node[pos=0.75] {$3/2\pi$}
		node[pos=1] {$2\pi$}
	;
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[tiny]
\addplot coordinates {
	(0,0) (1,0) 
	(1,1) (2,1)}
	[pos segment=0,yshift=7pt,font=\footnotesize]
	node[pos=0] {0} 
	node[pos=0.5] {0.5} 
	node[pos=1] {1};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
\addplot3[contour gnuplot,domain=0:1] {x*y}
	[sloped,
	 allow upside down,
	 pos segment=2,
	 every node/.style={yshift=7pt}]
	node[pos=0] {0} 
	node[pos=0.5] {0.5} 
	node[pos=1] {1}
	;
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
\addplot {x} 
	[left,/pgf/number format/relative=0]
node[pos=0.5] {%
  \pgfplotspointplotattime
  $(\pgfmathprintnumber
  		{\pgfkeysvalueof{/data point/x}},
    \pgfmathprintnumber
		{\pgfkeysvalueof{/data point/y}})$
}
node[pos=0.25] {%
  \pgfplotspointplotattime
  $(\pgfmathprintnumber
  		{\pgfkeysvalueof{/data point/x}},
    \pgfmathprintnumber
		{\pgfkeysvalueof{/data point/y}})$
}
node[pos=0.7,pin=180:{%
  \pgfplotspointplotattime{0.7}
  $(\pgfmathprintnumber
  		{\pgfkeysvalueof{/data point/x}},
    \pgfmathprintnumber
		{\pgfkeysvalueof{/data point/y}})$
}] {}
	;
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[symbolic x coords={A,B,C,D}]
\addplot coordinates {(A,0) (B,1) (C,1) (D,2)} 
	[left]
node[pos=0.3] {%
  \pgfplotspointplotattime
  $(\pgfkeysvalueof{/data point/x},
    \pgfmathprintnumber
		{\pgfkeysvalueof{/data point/y}})$
}
node[pos=0.7,pin=180:{%
  \pgfplotspointplotattime{0.7}
  $(\pgfkeysvalueof{/data point/x},
    \pgfmathprintnumber
		{\pgfkeysvalueof{/data point/y}})$
}] {}
	;
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}[]
% An undecorated graphics with a lot of 
% pretty-printing styles:
\begin{axis}[
	axis lines=middle,
	title=Undecorated Graphics,
	xmin=-2, xmax=2, ymin=-2, ymax=2,
	xtick={-1,1}, ytick={-1,1},
	% this disables the standard 
	% tick label *text* (but not the line)
	yticklabel=\ ,
	extra description/.code={
		% this generates custom y labels to implement 
		% individual styles for every tick:
		\node[below left] at (axis cs:0,-1) {$-1$};
		\node[above left] at (axis cs:0,1) {$1$};
	},
	axis line style={->},
  ]
  \addplot[blue,samples=100,domain=0:2*pi]
	({sin(deg(2*x))}, {sin(deg(x))});
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	% requires \usetikzlibrary{decorations.markings}
\begin{tikzpicture}[]
% Same as in previous example, but with decorations:
\begin{axis}[axis lines=middle,
	title=Decorated Graphics,
	xmin=-2, xmax=2, ymin=-2, ymax=2,
	xtick={-1,1}, ytick={-1,1},
	% this disables the standard 
	% tick label *text* (but not the line)
	yticklabel=\ ,
	extra description/.code={
		% this generates custom y labels to implement 
		% individual styles for every tick:
		\node[below left] at (axis cs:0,-1) {$-1$};
		\node[above left] at (axis cs:0,1) {$1$};
	},
	axis line style={->},
  ]
  \addplot[blue,samples=100,domain=0:2*pi,
	postaction={decorate},% ------
	decoration={markings, % ------
		 mark=at position 0.25 with {\arrow{stealth}},
		 mark=at position 0.5  with {\arrow{stealth}},
		 mark=at position 0.75 with {\arrow{stealth}}}
	]
	({sin(deg(2*x))}, {sin(deg(x))});
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[legend pos=outer north east]
	\addplot table {% plot X versus Y. This is original data.
		X Y
		1 1 
		2 4
		3 9
		4 16
		5 25
		6 36
	};
	\addplot table[
		y={create col/linear regression={y=Y}}] % compute a linear regression from the input table
	{
		X Y
		1 1 
		2 4
		3 9
		4 16
		5 25
		6 36
	};
	%\xdef\slope{\pgfplotstableregressiona} %<-- might be handy occasionally
	\addlegendentry{$y(x)$}
	\addlegendentry{% 
		$\pgfmathprintnumber{\pgfplotstableregressiona} \cdot x  
		\pgfmathprintnumber[print sign]{\pgfplotstableregressionb}$}
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{loglogaxis}
 \addplot table[x=dof,y=error2] 
    {pgfplotstable.example1.dat};	
  \addlegendentry{$y(x)$}
 \addplot table[
  	x=dof,
  	y={create col/linear regression={y=error2}}] 
    {pgfplotstable.example1.dat};	
  % might be handy occasionally:
  %\xdef\slope{\pgfplotstableregressiona} 
 \addlegendentry{slope 
   $\pgfmathprintnumber{\pgfplotstableregressiona}$}
\end{loglogaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{loglogaxis}
 \addplot table[x=dof,y=error2] 
	{pgfplotstable.example1.dat};	
  \addlegendentry{$y(x)$}
 \addplot table[
      x=dof,
  	  y={create col/linear regression={
        y=error2,
        variance list={1000,800,600,500,400}}
	  }
 ]
	{pgfplotstable.example1.dat};	
 \addlegendentry{slope 
  $\pgfmathprintnumber{\pgfplotstableregressiona}$}
\end{loglogaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[y=2cm]
	\addplot coordinates 
		{(-2,0) (-1,1) (0,0) (1,1) (2,0)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\tikzset{every mark/.append style={scale=2}}
\begin{tikzpicture}
\begin{axis}[y=2cm]
	\addplot coordinates 
		{(-2,0) (-1,1) (0,0) (1,1) (2,0)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[y=2cm]
  \addplot+[
	mark=halfcircle*,
	every mark/.append style={rotate=90}]
  coordinates 
	{(-2,0) (-1,1) (0,0) (1,1) (2,0)};
  \addplot+[
	mark=halfcircle*,
	every mark/.append style={rotate=180}]
  coordinates 
	{(-2,-0.1) (-1,0.9) (0,-0.1) (1,0.9) (2,-0.1)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[y=2cm]
  \addplot[
	blue,mark color=blue!50!white,
	mark=halfcircle*]
  coordinates 
	{(-2,0) (-1,1) (0,0) (1,1) (2,0)};
  \addplot[
	red,mark color=red!50!white,
	mark=halfsquare*]
  coordinates 
	{(-2,-0.1) (-1,0.9) (0,-0.1) (1,0.9) (2,-0.1)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	% Overwrite any cycle list:
\pgfplotsset{
  every axis plot post/.append style={
   mark=triangle,
   every mark/.append style={rotate=90}}}
\begin{tikzpicture}
\begin{axis}[y=2cm]
	\addplot coordinates 
		{(-2,0) (-1,1) (0,0) (1,1) (2,0)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	% requires \usetikzlibrary{spy}
\begin{tikzpicture}[spy using outlines=
	{circle, magnification=6, connect spies}]
\begin{axis}[no markers,grid=major,
	every axis plot post/.append style={thick}]
\addplot  coordinates
 {(0, 0.0) (0, 0.9) (1, 0.9) (2, 1) (3, 0.9) (80, 0)};
\addplot +[line join=round] coordinates
 {(0, 0.0) (0, 0.9) (2, 0.9) (3, 1) (4, 0.9) (80, 0)};
\addplot +[line join=bevel] coordinates
 {(0, 0.0) (0, 0.9) (3, 0.9) (4, 1) (5, 0.9) (80, 0)};
\addplot +[miter limit=5] coordinates
 {(0, 0.0) (0, 0.9) (4, 0.9) (5, 1) (6, 0.9) (80, 0)};
  \coordinate (spypoint) at (axis cs:3,1);
  \coordinate (magnifyglass) at (axis cs:60,0.7);
\end{axis}
\spy [blue, size=2.5cm] on (spypoint)
   in node[fill=white] at (magnifyglass);
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[enlarge x limits=false]
	\addplot[red,samples=500] {sin(deg(x))};
	\addplot[orange,samples=7] {sin(deg(x))};
	\addplot[teal,const plot,
		samples=14] {sin(deg(x))};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		colormap={bw}{gray(0cm)=(0); gray(1cm)=(1)}]
	\addplot+[scatter,only marks,
		 domain=0:8,samples=100]
		{exp(x)};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[colormap/bluered]
	\addplot+[scatter,
		 scatter src=x,samples=50]
		{sin(deg(x))};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	stack plots=y,stack dir=minus,
	cycle list name=color]
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	stack plots=y,stack dir=minus,
	cycle list name=exotic]
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	stack plots=y,stack dir=minus,
	cycle list name=black white]
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	stack plots=y,stack dir=minus,
	cycle list name=mark list]
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	stack plots=y,stack dir=minus,
	cycle list name=mark list*]
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	stack plots=y,stack dir=minus,
	cycle list name=color list]
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	stack plots=y,stack dir=minus,
	cycle list name=linestyles]
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	stack plots=y,stack dir=minus,
	cycle list name=linestyles*]
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	cycle multi list={
	  red,blue\nextlist
	  solid,{dotted,mark options={solid}}\nextlist
	  mark=*,mark=x,mark=o
	},
	samples=3,
	legend entries={0,...,20},
	legend pos=outer north east
]
	\addplot {x};
	\addplot {x-1};
	\addplot {x-2};
	\addplot {x-3};
	\addplot {x-4};
	\addplot {x-5};
	\addplot {x-6};
	\addplot {x-7};
	\addplot {x-8};
	\addplot {x-9};
	\addplot {x-10};
	\addplot {x-11};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	title={Cycle color between successive plots, then marks},
	cycle multi list={
		mark list\nextlist
		blue,red%
	},
	samples=3,
	legend entries={0,...,20},
	legend pos=outer north east
]
	\addplot {x};
	\addplot {x-1};
	\addplot {x-2};
	\addplot {x-3};
	\addplot {x-4};
	\addplot {x-5};
	\addplot {x-6};
	\addplot {x-7};
	\addplot {x-8};
	\addplot {x-9};
	\addplot {x-10};
	\addplot {x-11};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	title={Cycle 2 marks between successive plots, then colors},
	cycle multi list={%
		color list\nextlist
		[2 of]mark list
	},
	samples=3,
	legend entries={0,...,20},
	legend pos=outer north east
]
	\addplot {x};
	\addplot {x-1};
	\addplot {x-2};
	\addplot {x-3};
	\addplot {x-4};
	\addplot {x-5};
	\addplot {x-6};
	\addplot {x-7};
	\addplot {x-8};
	\addplot {x-9};
	\addplot {x-10};
	\addplot {x-11};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		axis background/.style={fill=blue!10}]
	\addplot3[surf,y domain=0:1] 
		{sin(deg(x)) * y*(1-y)};
		
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{semilogyaxis}[
		axis background/.style={
			shade,top color=gray,bottom color=white},
		legend style={fill=white}]
	\addplot {exp(-x)};
	\addplot {exp(-4*x)};
	\legend{$e^{-x}$,$e^{-4x}$}
	\end{semilogyaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[colorbar]
		\addplot[mesh,point meta=y,thick] {x^2};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
   \begin{axis}[
      title=Axis wide color mapping,
      colorbar,
      samples=50,point meta rel=axis wide,
	  point meta=y]
      \addplot[mesh,thick] {sin(deg(x))};
      \addplot[mesh,thick] {3*tanh(x)};
   \end{axis}
\end{tikzpicture}
~
\begin{tikzpicture}
   \begin{axis}[
      title=Per Plot color mapping,
      colorbar,
      samples=50,
	  point meta rel=per plot,
	  point meta=y]
      \addplot[mesh,thick] {sin(deg(x))};
      \addplot[mesh,thick] {3*tanh(x)};
   \end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	% requires \usepackage[pdftex]{ocg}
\begin{tikzpicture}
\begin{axis}[
	title=Dynamic PDF Layer Support (see Acrobat Layers),
	view={110}{35}]
\addplot3+[
	execute at begin plot visualization=\begin{ocg}{First Layer}{FirstLayer}{0},
	execute at end plot visualization=\end{ocg},
]
	coordinates {(0,0,12) (0,1,2) (1,0,6) (0,0,12)};
\addplot3+[
	execute at begin plot visualization=\begin{ocg}{Second Layer}{SecondLayer}{0},
	execute at end plot visualization=\end{ocg},
]
	coordinates {(0,0,9) (0,1,8) (1,0,4) (0,0,9)};
\addplot3+[
	execute at begin plot visualization=\begin{ocg}{Third Layer}{ThirdLayer}{0},
	execute at end plot visualization=\end{ocg},
]
	coordinates {(0,0,1) (0,1,7) (1,0,3) (0,0,1)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{loglogaxis}[
		% some descriptions:
		table/x=Basis,
		table/y={L2/r},
		xlabel=Degrees of Freedom,
		ylabel=relative Error,
		title=New Experiments (old in gray),
		legend entries={$e_1$,$e_2$,$e_3$}
	]
	\addplot[black!15,forget plot] 
		table {plotdata/oldexperiment1.dat};
	\addplot[black!15,forget plot] 
		table {plotdata/oldexperiment2.dat};
	\addplot[black!15,forget plot] 
		table {plotdata/oldexperiment3.dat};
	\addplot table {plotdata/newexperiment1.dat};
	\addplot table {plotdata/newexperiment2.dat};
	\addplot table {plotdata/newexperiment3.dat};
	\end{loglogaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
    \begin{loglogaxis}[
		forget plot style={opacity=0.2},
		% same as above:
        table/x=Basis,
        table/y={L2/r},
        xlabel=Degrees of Freedom,
        ylabel=relative Error,
        title=New Experiments (old in transparent),
        legend entries={$e_1$,$e_2$,$e_3$},
    ]
	\foreach \exp in {1,2,3} {
      \addplot+[forget plot]
          table {plotdata/oldexperiment\exp.dat};
      \addplot table {plotdata/newexperiment\exp.dat};
	}
    \end{loglogaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotsset{every axis/.append style={
	before end axis/.code={
		\fill[red] (axis cs:1,10) circle(5pt);
		\node at (axis cs:-4,10) 
			{\large This text has been inserted 
			 using \texttt{before end axis}.};
	}}}
\begin{tikzpicture}
	\begin{axis}
	\addplot {x^2};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotsset{every axis/.append style={
	after end axis/.code={
		\fill[red] (axis cs:1,10) circle(5pt);
		\node at (axis cs:-4,10) 
			{\large This text has been inserted using \texttt{after end axis}.};
	}}}
\begin{tikzpicture}
	\begin{axis}
	\addplot {x^2};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
    \begin{axis}[
		axis on top=true,
		axis x line=middle,
		axis y line=middle]
    \addplot+[fill] {x^3} \closedcycle;
    \end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
    \begin{axis}[
		axis on top=false,
		axis x line=middle,
		axis y line=middle]
    \addplot+[fill] {x^3} \closedcycle;
    \end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}
	\addplot+[
		scatter,
		scatter src=y,
		samples=40,
		visualization depends on=
			{5*cos(deg(x)) \as \perpointmarksize},
		scatter/@pre marker code/.append style=
			{/tikz/mark size=\perpointmarksize}
	]
		{sin(deg(x))};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{semilogyaxis}[log ticks with fixed point]
	\addplot+[domain=0:10] {exp(x)};
\end{semilogyaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{loglogaxis}[
	log ticks with fixed point,
	xlabel=Cost,ylabel=Error]
\addplot coordinates {
	(5,     8.31160034e-02)
	(17,    2.54685628e-02)
	(49,    7.40715288e-03)
	(129,   2.10192154e-03)
	(321,   5.87352989e-04)
	(769,   1.62269942e-04)
	(1793,  4.44248889e-05)
	(4097,  1.20714122e-05)
	(9217,  3.26101452e-06)
};
\addplot coordinates {
	(7,     8.47178381e-02)
	(31,    3.04409349e-02)
	(111,   1.02214539e-02)
	(351,   3.30346265e-03)
	(1023,  1.03886535e-03)
	(2815,  3.19646457e-04)
	(7423,  9.65789766e-05)
	(18943, 2.87339125e-05)
	(47103, 8.43749881e-06)
};
\legend{Case 1,Case 2}
\end{loglogaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotsset{
	samples=15,
	width=7cm,
	xlabel=$x$,
	ylabel=$f(x)$,
	extra y ticks={45},
	legend style={at={(0.03,0.97)},
		anchor=north west}}
\begin{tikzpicture}
\begin{semilogyaxis}[
	log plot exponent style/.style={
		/pgf/number format/fixed zerofill,
		/pgf/number format/precision=1},
	domain=-5:10]
	\addplot {exp(x)};
	\addplot {exp(2*x)};
	\legend{$e^x$,$e^{2x}$}
\end{semilogyaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotsset{
	samples=15,
	width=7cm,
	xlabel=$x$,
	ylabel=$f(x)$,
	extra y ticks={45},
	legend style={at={(0.03,0.97)},
		anchor=north west}}
\begin{tikzpicture}
\begin{semilogyaxis}[
	log plot exponent style/.style={
		/pgf/number format/fixed,
		/pgf/number format/use comma,
		/pgf/number format/precision=2},
	domain=-5:10]
	\addplot {exp(x)};
	\addplot {exp(2*x)};
	\legend{$e^x$,$e^{2x}$}
\end{semilogyaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}%
\begin{loglogaxis}
	[title=Standard options,
	width=6cm]
\addplot coordinates {
	(1e-2,10)
	(3e-2,100)
	(6e-2,200)
};
\end{loglogaxis}
\end{tikzpicture}%
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotsset{every axis/.append style={%
	width=6cm,
	xmin=7e-3,xmax=7e-2,
	extra x ticks={3e-2,6e-2},
	extra x tick style={major tick length=0pt,font=\footnotesize}
}}%
\begin{tikzpicture}%
	\begin{loglogaxis}[
		xtick={1e-2},
		title=with minor tick identification,
		extra x tick style={
			log identify minor tick positions=true}]
	\addplot coordinates {
		(1e-2,10)
		(3e-2,100)
		(6e-2,200)
	};
	\end{loglogaxis}
\end{tikzpicture}%
\begin{tikzpicture}%
	\begin{loglogaxis}[
		xtick={1e-2},
		title=without minor tick identification,
		extra x tick style={
			log identify minor tick positions=false}]
	\addplot coordinates {
		(1e-2,10)
		(3e-2,100)
		(6e-2,200)
	};
	\end{loglogaxis}%
\end{tikzpicture}%
 
	\begin{tikzpicture}
\begin{axis}
% keys valid for single plots:
\addplot ...;                          % uses the "cycle list" to determine keys
\addplot[key=value,key2=value2] ... ;  % uses the provided keys (not the "cycle list")
\addplot+[key=value,key2=value2] ... ; % appends something to the "cycle list"
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[x=1cm,y=1cm]
\addplot expression[domain=0:3] {2*x};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[x=1cm,y=0.5cm,y dir=reverse]
\addplot expression[domain=0:3] {2*x};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[x={(1cm,0.1cm)},y=1cm]
\addplot expression[domain=0:3] {2*x};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
		x={(5pt,1pt)},
		y={(-4pt,4pt)}]
\addplot {1-x^2};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	x={(1cm,-0.5cm)},
	y=1cm,
	z=0cm,
	axis on top,
	scale mode=scale uniformly,
	]
	\addplot3[surf,shader=interp] {x*y};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[axis equal=false,grid=major]
		\addplot[blue] expression[domain=0:2*pi,samples=300] {sin(deg(x))*sin(2*deg(x))};
	\end{axis}
\end{tikzpicture}
\hspace{1cm}
\begin{tikzpicture}
	\begin{axis}[axis equal=true,grid=major]
		\addplot[blue] expression[domain=0:2*pi,samples=300] {sin(deg(x))*sin(2*deg(x))};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{loglogaxis}[axis equal=false,grid=major]
		\addplot expression[domain=1:10000] {x^-2};
	\end{loglogaxis}
\end{tikzpicture}
\hspace{1cm}
\begin{tikzpicture}
	\begin{loglogaxis}[axis equal=true,grid=major]
		\addplot expression[domain=1:10000] {x^-2};
	\end{loglogaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[axis equal image=false,grid=major]
		\addplot[blue] expression[domain=0:2*pi,samples=300] {sin(deg(x))*sin(2*deg(x))};
	\end{axis}
\end{tikzpicture}
\hspace{1cm}
\begin{tikzpicture}
	\begin{axis}[axis equal image=true,grid=major]
		\addplot[blue] expression[domain=0:2*pi,samples=300] {sin(deg(x))*sin(2*deg(x))};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{loglogaxis}[axis equal image=false,grid=major]
		\addplot expression[domain=1:10000] {x^-2};
	\end{loglogaxis}
\end{tikzpicture}
\hspace{1cm}
\begin{tikzpicture}
	\begin{loglogaxis}[axis equal image=true,grid=major]
		\addplot expression[domain=1:10000] {x^-2};
	\end{loglogaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[unit vector ratio=2 1,small]
		\addplot coordinates {(0,0) (1,1)};
		\addplot table[row sep=\\,col sep=&] {
			x & y \\
			0 & 1 \\
			1 & 0 \\
		};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[footnotesize,xlabel=$x$,ylabel=$y$,unit vector ratio=]
	\addplot3[surf,samples=10,domain=0:1] {(1-x)*y};
	\end{axis}
\end{tikzpicture}
\begin{tikzpicture}
	\begin{axis}[footnotesize,xlabel=$x$,ylabel=$y$,unit vector ratio=1 1 1]
	\addplot3[surf,samples=10,domain=0:1] {(1-x)*y};
	\end{axis}
\end{tikzpicture}
\begin{tikzpicture}
	\begin{axis}[footnotesize,xlabel=$x$,ylabel=$y$,unit vector ratio=0.25 0.5]
	\addplot3[surf,samples=10,domain=0:1] {(1-x)*y};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[footnotesize,xlabel=$x$,ylabel=$y$,unit vector ratio=]
	\addplot3[surf,samples=10,domain=0:1] {(1-x)*y};
	\end{axis}
\end{tikzpicture}
\begin{tikzpicture}
	\begin{axis}[footnotesize,xlabel=$x$,ylabel=$y$,
		unit rescale keep size=false,
		unit vector ratio=1 1 1]
	\addplot3[surf,samples=10,domain=0:1] {(1-x)*y};
	\end{axis}
\end{tikzpicture}
\begin{tikzpicture}
	\begin{axis}[footnotesize,xlabel=$x$,ylabel=$y$,
		unit vector ratio*=0.25 0.5, % the '*' implies 'unit rescale keep size=false'
	]
	\addplot3[surf,samples=10,domain=0:1] {(1-x)*y};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[y post scale=1]
	\addplot {x};	
	\end{axis}
\end{tikzpicture}
\begin{tikzpicture}
	\begin{axis}[y post scale=2]
	\addplot {x};	
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[z post scale=1]
		\addplot3[surf] {x*y};
	\end{axis}
\end{tikzpicture}
\begin{tikzpicture}
	\begin{axis}[z post scale=2]
		\addplot3[surf] {x*y};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[title=Auto Limits]
	\addplot {x^2};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[title={\texttt{xmin=0}},xmin=0]
	\addplot {x^2};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[title={\texttt{ymax=10}},ymax=10]
	\addplot {x^2};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
 % Show (automatically) computed limits:
 title={
  Axis limits are 
  $
 [\pgfmathprintnumber{\pgfkeysvalueof{/pgfplots/xmin}}
 :\pgfmathprintnumber{\pgfkeysvalueof{/pgfplots/xmax}}
 ]  \times 
 [\pgfmathprintnumber{\pgfkeysvalueof{/pgfplots/ymin}}
 :\pgfmathprintnumber{\pgfkeysvalueof{/pgfplots/ymax}}
 ]$ },
]
	\addplot {x^2};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	xlabel=$x$ \emph{decreasing} $\to$,
	x dir=reverse]
	\addplot {x+rand*0.3};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	ylabel=$y$ \emph{decreasing} $\to$,
	y dir=reverse]
	\addplot {x^2};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	ylabel=$y$ \emph{decreasing} $\to$,
	xlabel=$x$ normal,
	title=reversed axis,
	y dir=reverse,
	colorbar,
	colorbar style={y dir=reverse}]
	\addplot+[mesh,scatter] {x^15};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
		\addplot {5 * x^3 - x^2 + 4*x -2};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[enlarge x limits=0.2]
		\addplot {5 * x^3 - x^2 + 4*x -2};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[minor x tick num=4,
		enlarge x limits={rel=0.5,upper}
	]
		\addplot {5 * x^3 - x^2 + 4*x -2};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[minor x tick num=4,
		enlarge x limits={abs=3}
	]
		\addplot {5 * x^3 - x^2 + 4*x -2};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{loglogaxis}[enlarge x limits={abs=11}]
		\addplot+[domain=1:100000] {x^-2};
	\end{loglogaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\pgfplotsset{
	every axis plot post/.append style=
		{mark=none}}
\begin{axis}[
	legend style={
		at={(0.03,0.97)},anchor=north west},
	domain=0:1]
	\addplot {x^2};
	\addplot {exp(x)};
	\legend{$x^2$,$e^x$}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotsset{my personal style/.style=
	{grid=major,font=\large}}
\begin{tikzpicture}
\begin{axis}[my personal style]
	\addplot coordinates {(0,0) (1,1)};	
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[symbolic x coords={a,b,c,d,e,f,g,h,i}]
	\addplot+[smooth] coordinates {
		(a,42)
		(b,50)
		(c,80)
		(f,60)
		(g,62)
		(i,90)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	% requires \usepgfplotslibrary{dateplot} !
\pgfplotstabletypeset[string type]{plotdata/accounts.dat}
\begin{tikzpicture}
	\begin{axis}[
		date coordinates in=x,
		xticklabel={\day.\month.},
		xlabel={2008},
		stack plots=y,
		yticklabel={\pgfmathprintnumber{\tick}\EUR{}}, % <- requires \usepackage{eurosym}
		ylabel=Total credit,
		ylabel style={yshift=10pt},
		legend style={
			at={(0.5,-0.3)},anchor=north,legend columns=-1}]
		
	\addplot table[x=date,y=account1] {plotdata/accounts.dat};
	\addplot table[x=date,y=account2] {plotdata/accounts.dat};
	\addplot table[x=date,y=account3] {plotdata/accounts.dat};
	\legend{Giro,Tagesgeld,Sparbuch}
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	% requires \usepgfplotslibrary{dateplot} !
\begin{tikzpicture}
  \begin{axis}[
    date coordinates in=x,
    xtick=data,
    xticklabel style=
		{rotate=90,anchor=near xticklabel},
    xticklabel=\day. \hour:\minute,
    date ZERO=2009-08-18,% <- improves precision!
  ]
  \addplot coordinates {
    (2009-08-18 09:00,  050)
    (2009-08-18 12:00,  100)
    (2009-08-18 15:00,  100)
    (2009-08-18 18:35,  100)
    (2009-08-18 21:30,  040)
    (2009-08-19,        020)
    (2009-08-19 3:00,   000)
    (2009-08-19 6:0,    035)
  };
  \end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[symbolic x coords={a,b,c,d,e,f,g,h,i}]
	\addplot+[smooth] coordinates {
		(a,42)
		(b,50)
		(c,80)
		(f,60)
		(g,62)
		(i,90)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	% requires \usepgfplotslibrary{dateplot} !
\pgfplotstabletypeset[string type]{plotdata/accounts.dat}
\begin{tikzpicture}
	\begin{axis}[
		date coordinates in=x,
		xticklabel={\day.\month.},
		xlabel={2008},
		stack plots=y,
		yticklabel={\pgfmathprintnumber{\tick}\EUR{}}, % <- requires \usepackage{eurosym}
		ylabel=Total credit,
		ylabel style={yshift=10pt},
		legend style={
			at={(0.5,-0.3)},anchor=north,legend columns=-1}]
		
	\addplot table[x=date,y=account1] {plotdata/accounts.dat};
	\addplot table[x=date,y=account2] {plotdata/accounts.dat};
	\addplot table[x=date,y=account3] {plotdata/accounts.dat};
	\legend{Giro,Tagesgeld,Sparbuch}
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	% requires \usepgfplotslibrary{dateplot} !
\begin{tikzpicture}
  \begin{axis}[
    date coordinates in=x,
    xtick=data,
    xticklabel style=
		{rotate=90,anchor=near xticklabel},
    xticklabel=\day. \hour:\minute,
    date ZERO=2009-08-18,% <- improves precision!
  ]
  \addplot coordinates {
    (2009-08-18 09:00,  050)
    (2009-08-18 12:00,  100)
    (2009-08-18 15:00,  100)
    (2009-08-18 18:35,  100)
    (2009-08-18 21:30,  040)
    (2009-08-19,        020)
    (2009-08-19 3:00,   000)
    (2009-08-19 6:0,    035)
  };
  \end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	xtick=\empty,
	ytick={-2,0.3,3,3.7,4.5}]
\addplot+[smooth] coordinates {
	(-2,3) (-1.5,2) (-0.3,-0.2) 
	(1,1.2) (2,2) (3,5)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[xtick=data,xmajorgrids]
	\addplot coordinates {
		(1,2)
		(2,5)
		(4,6.5)
		(6,8)
		(10,9)
	};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{loglogaxis}[
	title=A log plot with small axis range]
	\addplot coordinates {
		(10,1e-4)
		(17,8.3176e-05)
		(25,7.0794e-05)
		(50,5e-5)
	};
\end{loglogaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[minor tick num=1]
	\addplot {x^3};
	\addplot {-20*x};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[minor tick num=3]
	\addplot {x^3};
	\addplot {-20*x};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[minor x tick num=1,
	             minor y tick num=3]
	\addplot {x^3};
	\addplot {-20*x};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[minor xtick={-3,1},grid=minor]
	\addplot {x^3};
	\addplot {-20*x};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[minor ytick=data]
	\addplot {x^2};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	xmin=0,xmax=3,ymin=0,ymax=15,
	extra y ticks={2.71828},
	extra y tick labels={$e$},
	extra x ticks={2.2},
	extra x tick style={grid=major,
		tick label style={
			rotate=90,anchor=east}},
	extra x tick labels={Cut},
]
	\addplot {exp(x)};
	\addlegendentry{$e^x$}
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotsset{every axis/.append style={width=5.3cm}}
\begin{tikzpicture}
\begin{loglogaxis}[
	title=Explicitly Provided Limits,
	xtickten={1,2},
	ytickten={-5,-6}]
\addplot coordinates 
	{(10,1e-5) (20,5e-6) (40,2.5e-6)};
\end{loglogaxis}
\end{tikzpicture}
\begin{tikzpicture}
\begin{loglogaxis}[
	title=With Extra Ticks,
	xtickten={1,2},
	ytickten={-5,-6},
	extra x ticks={20,40},
	extra y ticks={5e-6,2.5e-6}]
\addplot coordinates 
	{(10,1e-5) (20,5e-6) (40,2.5e-6)};
\end{loglogaxis}
\end{tikzpicture}
\begin{tikzpicture}
\begin{loglogaxis}[
	title=With Extra Ticks; $10^e$ format,
	extra tick style={log identify minor tick positions=false},
	xtickten={1,2},
	ytickten={-5,-6},
	extra x ticks={20,40},
	extra y ticks={5e-6,2.5e-6}]
\addplot coordinates 
	{(10,1e-5) (20,5e-6) (40,2.5e-6)};
\end{loglogaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{semilogyaxis}[
	samples=8,
	ytickten={-6,-4,...,4},
	domain=0:10]
\addplot {2^(-2*x + 6)};
\addlegendentry{$2^{-2x + 6}$}
% or invoke gnuplot to generate coordinates:
\addplot gnuplot[id=pow2] 
	{2**(-1.5*x -3)};
\addlegendentry{$2^{-1.5x -3}$}
\end{semilogyaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	xtick={-1.5,-1,...,1.5},
	xticklabels={%
		$-1\frac 12$,
		$-1$,
		$-\frac 12$,
		$0$,
		$\frac 12$,
		$1$},
	% note: \frac can be done automatically:
	% xticklabel style={/pgf/number format/frac},
]
\addplot[smooth,blue,mark=*] 
coordinates {
	(-1,    1)
	(-0.75, 0.5625)
	(-0.5,  0.25)
	(-0.25, 0.0625)
	(0,     0)
	(0.25,  0.0625)
	(0.5,   0.25)
	(0.75,  0.5625)
	(1,     1)
};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{semilogyaxis}[
  ytickten={-2,-1,0,1,2},
  yticklabels={$\frac{1}{100}$,%
  	$\frac{1}{10}$,%
	1,10,100},
]
	\addplot {exp(x)};
\end{semilogyaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{semilogyaxis}[
		yticklabel style={/pgf/number format/fixed},
		% changes tick labels to a number instead 
		% of exponential notation:
		yticklabel={%
			\pgfmathfloatparsenumber{\tick}%
			\pgfmathfloatexp{\pgfmathresult}%
			\pgfmathprintnumber{\pgfmathresult}%
		},
	]
		\addplot {exp(x)};
	\end{semilogyaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	% \usepackage{nicefrace}% required
\begin{tikzpicture}
\begin{axis}[
	% x ticks explicitly formatted:
	xtick={0,1,0.5,0.25,0.75},
	xticklabels={$0$,$1$,$\frac12$,$\frac14$,$\frac34$},
	% y ticks automatically by some code fragment:
	ytick=data,
	yticklabel={%
		\scriptsize
		\ifdim\tick pt<0pt % a TeX \if -- see TeX Book
			\pgfmathparse{-10*\tick}%
			$-\nicefrac{\pgfmathprintnumber{\pgfmathresult}}{10}$%
		\else
			\ifdim\tick pt=0pt
			\else
				\pgfmathparse{10*\tick}%
				$\nicefrac{\pgfmathprintnumber{\pgfmathresult}}{10}$%
			\fi
		\fi
	},
	% NOTE: this here does the same:
	% yticklabel style={/pgf/number format/.cd,frac,
	% 	frac TeX=\nicefrac,frac whole=false,frac denom=10},
	ymajorgrids,
	title=A special Prewavelet,
	axis x line=center,
	axis y line=left,
	]
	\addplot coordinates {(0,-1.2) (0.25,1.1) 
		(0.5,-0.6) (0.75,0.1) (1,0)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[x tick label as interval]
	\addplot {3*x};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	ybar interval=0.9,
	x tick label as interval,
	xmin=2003,xmax=2030,
	ymin=0,ymax=140,
	xticklabel={
	   $\pgfmathprintnumber{\tick}$
	-- $\pgfmathprintnumber{\nexttick}$},
	xtick=data,
	x tick label style={
		rotate=90,anchor=east,
		/pgf/number format/1000 sep=}
]
	\addplot[draw=blue,fill=blue!40!white]
		coordinates
		{(2003,40) (2005,100) (2006,15) 
		 (2010,90) (2020,120) (2030,3)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	xtick=data,ytick=data,
	xtick align=center]
\addplot coordinates 
	{(-3,0) (-2,0.1) (-1,-0.6) 
	 (0,1)
	 (1,-0.6) (2,0.1) (3,0)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	xtick=data,ytick=data,
	ytick align=outside]
\addplot coordinates 
	{(-3,0) (-2,0.1) (-1,-0.6)
	 (0,1) 
	 (1,-0.6) (2,0.1) (3,0)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	xtick=data,
	axis x line=center,
	xticklabels={,,},
	ytick={-0.6,0,0.1,1},
	yticklabels={
		$-\frac{6}{10}$,,
		$\frac{1}{10}$,$1$},
	ymajorgrids,
	axis y line=left,
	enlargelimits=0.05]
\addplot coordinates 
	{(-3,0) (-2,0.1) (-1,-0.6)
	 (0,1) 
	 (1,-0.6) (2,0.1) (3,0)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[scaled ticks=true]
	\addplot coordinates {
		(20000,0.0005)
		(40000,0.0010)
		(60000,0.0020)
	};
\end{axis}
\end{tikzpicture}%
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[scaled ticks=false]
	\addplot coordinates {
		(20000,0.0005)
		(40000,0.0010)
		(60000,0.0020)
	};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[scaled ticks=base 10:3,
		/pgf/number format/sci subscript]
	\addplot coordinates
		{(-0.00001,2e12) (-0.00005,4e12) };
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		xtick={0,1.5708,...,10},
		domain=0:2*pi,
		scaled x ticks={real:3.1415},
		xtick scale label code/.code={$\cdot \pi$}]
	\addplot {sin(deg(x))};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}[
		scaled x ticks=real:2,
		scaled y ticks=real:3]
	\addplot {x^3};
	\node[pin=135:{$(3,9)$}] at (axis cs:3,9) {};
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture} 
\begin{axis}[
	% warning: the '%' signs are necessary (?)
	scaled y ticks=manual:{$+65\,535$}{%
		\pgfmathparse{#1-65535}%
	},
	yticklabel style={
		/pgf/number format/fixed,
		/pgf/number format/precision=1},
] 
\addplot coordinates { 
	(0, 65535) 
	(13, 65535) 
	(14, 65536) 
	(15, 65537) 
	(30, 65537) 
}; 
\end{axis} 
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	title=\texttt{tick scale 
		binop=\textbackslash cdot}]
\addplot
	[mark=none,blue,samples=250,
	 domain=0:5]
	{exp(10*x)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	title=\texttt{tick scale 
		binop=\textbackslash times},
	tick scale binop=\times]
\addplot
	[mark=none,blue,samples=250,
	 domain=0:5] 
	{exp(10*x)};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{semilogyaxis}[log basis y=2,grid=major,samples at={-4,...,4}]
		\addplot {2^x};
	\end{semilogyaxis}
\end{tikzpicture}
~
\begin{tikzpicture}
	\begin{semilogyaxis}[log basis y=10,samples at={-4,...,4}]
		\addplot {2^x};
	\end{semilogyaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	% requires \usepgfplotslibrary{patchplots}
\begin{tikzpicture}
\begin{axis}[
	% tell pgfplots to "grab" the axis at its internal (0,0) coord:
    anchor=origin,      
	% tell pgfplots to place its anchor at (0,0):
	% (This is actually the default and can be omitted)
    at={(0pt,0pt)},
	% tell pgfplots to use the "natural" dimensions:
    disabledatascaling,
	% tell pgfplots to use the same unit vectors as tikz:
    x=1cm,y=1cm,
	%
	hide axis,
]
\addplot[patch,patch type=coons,
	shader=interp,point meta=explicit] 
coordinates {
	(0,0)   [0] % first corner
	(1,-1)  [0] % bezier control point between (0) and (3)
	(4,0.7) [0] % bezier control point between (0) and (3)
	%
	(3,2)   [1] % second corner
	(4,3.5) [1] % bezier control point between (3) and (6)
	(7,2)   [1] % bezier control point between (3) and (6)
	%
	(7,1)      [2] % third corner
	(6,0.6)    [2] % bezier control point between (6) and (9)
	(4.5,-0.5) [2] % bezier control point between (6) and (9)
	%
	(5,-2)   [3] % fourth corner
	(4,-2.5) [3] % bezier control point between (9) and (0)
	(-1,-2)  [3] % bezier control point between (9) and (0)
};
\end{axis}
% this requires pgf 2.10 
\begin{scope}[every node/.style={circle,inner sep=2pt,fill=black}]
\node[pin=140:first] at (0,0) {};
\node[pin=second]    at (3,2) {};
\node[pin=45:third]  at (7,1) {};
\node[pin=0:fourth]  at (5,-2) {};
\end{scope}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot+[data cs=polar,domain=0:360] (\x,1);
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
	\begin{axis}
	\addplot+[data cs=polarrad,domain=0:2*pi] (\x,1);
	\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	% requires \usepgfplotslibrary{polar}
\begin{tikzpicture}
	\begin{polaraxis}
	\addplot coordinates {(90,1) (180,1)};
	\addplot+[data cs=cart] 
		coordinates {(1,0) (0.5,0.5)};
	\end{polaraxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	enlargelimits=0.01,
	title style={yshift=5pt},
	title=Scatter plot with $2250$ points]
	
\addplot[blue,
	mark=*,only marks,mark options={scale=0.3}]
	file[skip first]
	{plotdata/pgfplots_scatterdata3.dat};
	
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	enlarge x limits=0.03,
	title=Ornstein-Uhlenbeck sample
		($13000$ time steps),
	xlabel=$t$]
	
\addplot[blue] file {plotdata/ou.dat};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\begin{tikzpicture}
\begin{axis}[
	title=$120 \times 120$ Smooth Surface,
	xlabel=$x$,
	ylabel=$y$]
\addplot3[surf,samples=120,shader=interp,domain=0:1] 
	{sin(deg(8*pi*x))* exp(-20*(y-0.5)^2) 
	+ exp(-(x-0.5)^2*30 
		- (y-0.25)^2 - (x-0.5)*(y-0.25))};
\end{axis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset[sci zerofill]{
	a b
	5000 1.234e5
	6000 1.631e5
	7000 2.1013e5
	9000 1000000
}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstableset{% global config, for example in the preamble
	% these columns//.style={} things define a style
	% which applies to  only.
	columns/dof/.style={int detect,column type=r,column name=\textsc{Dof}},
	columns/error1/.style={
		sci,sci zerofill,sci sep align,precision=1,sci superscript,
		column name=$e_1$,
	},
	columns/error2/.style={
		sci,sci zerofill,sci sep align,precision=2,sci 10e,
		column name=$e_2$,
	},
	columns/{grad(log(dof),log(error2))}/.style={
		string replace={0}{}, % erase '0'
		column name={$\nabla e_2$},
		dec sep align,
	},
	columns/{quot(error1)}/.style={
		string replace={0}{}, % erase '0'
		column name={$\frac{e_1^{(n)}}{e_1^{(n-1)}}$}
	},
	empty cells with={--}, % replace empty cells with '--'
	every head row/.style={before row=\toprule,after row=\midrule},
	every last row/.style={after row=\bottomrule}
}
\pgfplotstabletypeset[ % local config, applies only for this table
	1000 sep={\,},
	columns/info/.style={
		fixed,fixed zerofill,precision=1,showpos,
		column type=r,
	}
]
{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset
	[col sep=&,row sep=\\,sci zerofill]
{
	level &  dof &    error \\
	1 &      4 &      2.50000000e-01 \\
	2 &      16 &     6.25000000e-02 \\
	3 &      64 &     1.56250000e-02 \\
	4 &      256 &    3.90625000e-03 \\
	5 &      1024 &   9.76562500e-04 \\
	6 &      4096 &   2.44140625e-04 \\
	7 &      16384 &  6.10351562e-05 \\
	8 &      65536 &  1.52587891e-05 \\
	9 &      262144 & 3.81469727e-06 \\
	10 &     1048576 &9.53674316e-07 \\
}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstableread{pgfplotstable.example1.dat}\loadedtable
\pgfplotstabletypeset[columns={dof,error1}]\loadedtable
\hspace{2cm}
\pgfplotstabletypeset[columns={dof,error2}]\loadedtable
 
	% Alternative: inline table data:
\pgfplotstableread{
level   dof     error1  error2  info    grad(log(dof),log(error2))      quot(error1)    
1       4       2.50000000e-01  7.57858283e-01  48      0                   0   
2       16      6.25000000e-02  5.00000000e-01  25      -3.00000000e-01 4       
3       64      1.56250000e-02  2.87174589e-01  41      -3.99999999e-01 4       
4       256     3.90625000e-03  1.43587294e-01  8       -5.00000003e-01 4       
5       1024    9.76562500e-04  4.41941738e-02  22      -8.49999999e-01 4       
6       4096    2.44140625e-04  1.69802322e-02  46      -6.90000001e-01 4       
7       16384   6.10351562e-05  8.20091159e-03  40      -5.24999999e-01 4       
8       65536   1.52587891e-05  3.90625000e-03  48      -5.35000000e-01 3.99999999e+00  
9       262144  3.81469727e-06  1.95312500e-03  33      -5.00000000e-01 4.00000001e+00  
10      1048576 9.53674316e-07  9.76562500e-04  2       -5.00000000e-01 4.00000001e+00  
}\loadedtable
% can be used as above:
\pgfplotstabletypeset[columns={dof,error1}]\loadedtable
\hspace{2cm}
\pgfplotstabletypeset[columns={dof,error2}]\loadedtable
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset[col sep=comma]{pgfplotstable.example1.csv}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset
	[col sep=comma,ignore chars={(,),\ ,\#}]
	{pgfplotstable.example5.dat}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset[comment chars=!]{
! Some comments
1 0
2 -10
! another comment line
3 0
}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset[skip first n=4]{%<- this '%' is important. Otherwise, the 
                                      %newline here would delimit an (empty) row.
	XYZ Format,
	Version 1.234
	Date 2010-09-01
	@author Mustermann
	A B C
	1 2 3
	4 5 6
}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset[columns={dof,level,[index]4}]{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	% in preamble:
\pgfplotstableset{
	alias/newname/.initial=b,
}
% in document:
\pgfplotstabletypeset[
	columns={a,newname},% access to `newname' is the same as to `b'
]{
	a b
	1 2
	3 4
	5 6
}%
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset[
	columns/error1/.style={
		column name=$L_2$,
		sci,sci zerofill,sci subscript,
		precision=3},
	columns/error2/.style={
		column name=$A$,
		sci,sci zerofill,sci subscript,
		precision=2},
	columns/dof/.style={
		int detect,
		column name=\textsc{Dof}
	}
]
	{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset[
	columns={dof,error1,{grad(log(dof),log(error2))}},
	columns/error1/.style={
		column name=$L_2$,
		sci,sci zerofill,sci subscript,
		precision=3},
	columns/dof/.style={
		int detect,
		column name=\textsc{Dof}},
	columns/{grad(log(dof),log(error2))}/.style={
		column name=slopes $L_2$,
		fixed,fixed zerofill,
		precision=1}
]
	{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset[
	columns={dof,error1,info},
	column type/.add={|}{}% results in '|c'
]
	{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	% requires \usepackage{array}
\pgfplotstabletypeset[
	columns={dof,error1,error2,info,{grad(log(dof),log(error2))}},
	columns/error1/.style={dec sep align},
	columns/error2/.style={sci,sci subscript,sci zerofill,dec sep align},
	columns/info/.style={fixed,dec sep align},
	columns/{grad(log(dof),log(error2))}/.style={fixed,dec sep align}
]
	{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	% requires \usepackage{array}
\pgfplotstabletypeset[
	use comma,
	columns={dof,error1,error2,info,{grad(log(dof),log(error2))}},
	columns/error1/.style={dec sep align},
	columns/error2/.style={sci,sci subscript,sci zerofill,dec sep align},
	columns/info/.style={fixed,dec sep align},
	columns/{grad(log(dof),log(error2))}/.style={fixed,dec sep align}
]
	{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	% requires \usepackage{array}
\pgfplotstabletypeset[
	use comma,
	columns={dof,error1,error2,info,{grad(log(dof),log(error2))}},
	columns/error1/.style={dec sep align,sci zerofill},
	columns/error2/.style={sci,sci subscript,sci zerofill,dec sep align},
	columns/info/.style={fixed,dec sep align},
	columns/{grad(log(dof),log(error2))}/.style={fixed,dec sep align,fixed zerofill}
]
	{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset[
	sort,sort key=error2,
	columns={dof,error1,error2},
	columns/error1/.style={sci,sci subscript,sci zerofill,dec sep align},
	columns/error2/.style={sci,sci subscript,sci zerofill,dec sep align},
]
	{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset[
 every head row/.style={before row=\hline,after row=\hline\hline},
 every last row/.style={after row=\hline},
 every first column/.style={
  column type/.add={|}{}
 },
 every last column/.style={
  column type/.add={}{|}
 }]
	{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	% requires \usepackage{colortbl}
\pgfplotstabletypeset[
 every even column/.style={
  column type/.add={>{\columncolor[gray]{.8}}}{}
}]
	{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	% \usepackage{booktabs}
\pgfplotstabletypeset[
	column type=l,
	every head row/.style={
		before row={%
			\toprule
			& \multicolumn{2}{c}{Singular} & \multicolumn{2}{c}{Plural}\\
		},
		after row=\midrule,
	},
	every last row/.style={
		after row=\bottomrule},
	columns/person/.style       ={column name=},
	columns/singGaeilge/.style  ={column name=Gaeilge},
	columns/pluralGaeilge/.style={column name=Gaeilge},
	columns/singEnglish/.style  ={column name=English},
	columns/pluralEnglish/.style={column name=English},
	col sep=&,row sep=\\,
	string type,
]{
person & singEnglish  & singGaeilge & pluralEnglish  & pluralGaeilge\\
1st    & at me        & agam        & at us          & againn\\
2st    & at you       & agat        & at you         & agaibh\\
3st    & at him       & aige        & at them        & acu\\
       & at her       & aici        &                &\\
}
 
	
		
		[.tex]
		[.pdf]
	
	\newcolumntype{C}{>{\centering\arraybackslash}p{6mm}}% a centered fixed-width-column
\pgfplotstabletypeset[
	col sep=&,
	row sep=\\,
	every head row/.style={
	% as in the previous example, this patches the first row:
		before row={
			\hline
			\rowcolor{lightgray}
			\multicolumn{3}{|>{\columncolor{lightgray}}c|}{Quantenzahlen} & Term--\\
			\rowcolor{lightgray}
		},
		after row=\hline,
	},
	every last row/.style={
		after row=\hline},
	% define column-specific styles:
	columns/n/.style={column type=|C,column name=$n$},
	columns/l/.style={column type=|C,column name=$\ell$},
	columns/lambda/.style={column type=|C,column name=$\lambda$},
	columns/text/.style={column type=|c|,column name=bezeichnung,
		string type % <-it contains formatted data
	},
]
{
n & l & lambda & text\\
1 & 0 & 0 & $1 s\sigma$ \\
2 & 0 & 0 & $2 s\sigma$ \\
2 & 1 & 0 & $2 p\sigma$ \\
2 & 1 & 1 & $2 p \pi $\\
3 & 2 & 0 & $3 d\sigma$ \\
3 & 2 & 2 & $3 d\delta$ \\
}
 
	
		
		[.tex]
		[.pdf]
	
	% requires \usepackage{booktabs}
\pgfplotstabletypeset[
	every head row/.style={
		before row=\toprule,after row=\midrule},
	every last row/.style={
		after row=\bottomrule},
]
	{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	% requires \usepackage{booktabs,colortbl}
\pgfplotstabletypeset[
	every even row/.style={
		before row={\rowcolor[gray]{0.9}}},
	every head row/.style={
		before row=\toprule,after row=\midrule},
	every last row/.style={
		after row=\bottomrule},
]
	{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset[
  % suppress the leading row 'col1  col2  col3':
  every head row/.style={output empty row},
  col sep=comma,
  columns/col1/.style={string type,column type=r},
  columns/col2/.style={string type,column type=l},
  columns/col3/.style={string type,column type=l},
  ]
{
	col1,col2,col3
	Col A,B,C
	The first column,E,F
}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset[
	every nth row={3}{before row=\midrule},
	every head row/.style={
	    before row=\toprule,after row=\midrule},
	every last row/.style={
		after row=\bottomrule},
]{
	a b
	0 0
	1 1
	2 2
	3 3
	4 4
	5 5
	6 6
	7 7
	8 8
}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset[
	every nth row={3[+1]}{before row=\midrule},
]{
	a b
	0 0
	1 1
	2 2
	3 3
	4 4
	5 5
	6 6
	7 7
	8 8
	9 9
	10 10
}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset[
	col sep=&,row sep=\\]{
  colA & colB & colC \\
  11   & 12   & 13   \\
  21   & 22   & 23   \\
}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset[
	every row 1 column 2/.style={/pgf/number format/sci},
	every row 0 column 0/.style={postproc cell content/.style={@cell content=\textbf{##1}}},
	col sep=&,row sep=\\]{
  colA & colB & colC \\
  11   & 12   & 13   \\
  21   & 22   & 23   \\
}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset[
	every row 1 column colB/.style={string replace*={2}{4}},
	every row 0 column colA/.style={preproc/expr={##1*8}},
	col sep=&,row sep=\\]{
  colA & colB & colC \\
  11   & 12   & 13   \\
  21   & 22   & 23   \\
}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset[
	columns={dof,error1},
	outfile=pgfplotstable.example1.out.tex]
	{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset[
	begin table={
},
	typeset cell/.style={
	  /pgfplots/table/@cell content={
#1 | }
	},
	before row=
,after row=
,
	skip coltypes, typeset=false, 
	verbatim,% configures number printer
	TeX comment=,
	columns={level,dof,error1},
	outfile=pgfplotstable.example1.out.html,
]{pgfplotstable.example1.dat}
\lstinputlisting
	[basicstyle=\ttfamily\footnotesize]
	{pgfplotstable.example1.out.html}
 
	
		
		[.tex]
		[.pdf]
	
	% An example how to use 
% \usepackage{multirow} and
% \usepackage{booktabs}:
\pgfplotstabletypeset[
	columns/Z/.style={
		column name={},
		assign cell content/.code={% use \multirow for Z column:
			\ifnum\pgfplotstablerow=0
				\pgfkeyssetvalue{/pgfplots/table/@cell content}
					{\multirow{4}{*}{##1}}%
			\else
				\pgfkeyssetvalue{/pgfplots/table/@cell content}{}%
			\fi
		},
	},
	% use \booktabs as well (compare examples above):
	every head row/.style={before row=\toprule,after row=\midrule},
	every last row/.style={after row=\bottomrule},
	row sep=\\,col sep=&,
	outfile=pgfplotstable.multirow.out,% write it to file
]{% here: inline data in tabular format:
	Z    & a & b \\
	data & 1 & 2 \\
	     & 3 & 4 \\
	     & 5 & 6 \\
	     & 7 & 8 \\
}
% ... and show the generated file:
\lstinputlisting[basicstyle=\footnotesize\ttfamily]{pgfplotstable.multirow.out}
 
	
		
		[.tex]
		[.pdf]
	
	% Requires 
% \usepackage{pgfcalendar}
\pgfplotstableset{columns={date,account1}}
% plotdata/accounts.dat contains:
%
% date              account1  account2  account3
% 2008-01-03        60        1200      400
% 2008-02-06        120       1600      410
% 2008-03-15        -10       1600      410
% 2008-04-01        1800      500       410
% 2008-05-20        2300      500       410
% 2008-06-15        800       1920      410
% Show the contents in `string type':
\pgfplotstabletypeset[
	columns/date/.style={string type}
]{plotdata/accounts.dat}
\hspace{1cm}
% Show the contents in `date type':
\pgfplotstabletypeset[
	columns/date/.style={date type={\monthname\ \year}}
]{plotdata/accounts.dat}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset[columns={level,dof}]
	{pgfplotstable.example1.dat}
\pgfplotstabletypeset[
	columns={level,dof},
	columns/level/.style={string replace={A}{B}}, % does nothing because there is no cell 'A'
	columns/dof/.style={string replace={256}{-42}}]  % replace cell '256' with '-42'
	{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset[
	string replace*={2}{6},
	col sep=&,row sep=\\]{
  colA & colB & colC \\
  11   & 12   & 13   \\
  21   & 22   & 23   \\
}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset[
	columns={level},
	columns/level/.style={
		column name={$2\cdot \text{level}+4$},
		preproc/expr={2*##1 + 4}
	}
]
	{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstableset{
	columns={error1,sqrterror1},
	create on use/sqrterror1/.style={create col/copy=error1},
	columns/error1/.style={column name=$\epsilon$},
	columns/sqrterror1/.style={sqrt,column name=$\sqrt \epsilon$},
	sci,sci 10e,precision=3,sci zerofill
}
\pgfplotstabletypeset{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstableset{
	columns={dof,error2,slopes2},
	columns/error2/.style={sci,sci zerofill},
	columns/slopes2/.style={dec sep align,empty cells with={\ensuremath{-}}},
	create on use/slopes2/.style=
		{create col/gradient loglog={dof}{error2}}}
\pgfplotstabletypeset{pgfplotstable.example1.dat}
\pgfplotstabletypeset[columns/slopes2/.append style={multiply -1}]
	{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	% requires \usepackage{booktabs}
\pgfplotstabletypeset[
	every head row/.style={
		before row=\toprule,after row=\midrule},
	every last row/.style={
		after row=\bottomrule},
	row predicate/.code={%
		\ifnum#1>4\relax
			\ifnum#1<8\relax
				\pgfplotstableuserowfalse
			\fi
		\fi}
]
	{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	% requires \usepackage{booktabs}
\pgfplotstabletypeset[
	every head row/.style={
		before row=\toprule,after row=\midrule},
	every last row/.style={
		after row=\bottomrule},
	skip rows between index={2}{4},
	skip rows between index={7}{9}
]
	{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	% requires \usepackage{booktabs}
\pgfplotstableset{
	every head row/.style={before row=\toprule,after row=\midrule},
	every last row/.style={after row=\bottomrule}}
\pgfplotstabletypeset[string type]{pgfplotstable.example2.dat}%
~
\pgfplotstabletypeset[
	columns={A,B,A,B},
	display columns/0/.style={select equal part entry of={0}{2},string type},% first part of `A'
	display columns/1/.style={select equal part entry of={0}{2},string type},% first part of `B'
	display columns/2/.style={select equal part entry of={1}{2},string type},% second part of `A'
	display columns/3/.style={select equal part entry of={1}{2},string type},% second part of `B'
]
	{pgfplotstable.example2.dat}
 
	
		
		[.tex]
		[.pdf]
	
	% requires \usepackage{eurosym}
\pgfplotstabletypeset[
	column type=r,
	columns={dof,info},
	columns/info/.style={
		% stupid example for multiple postprocessors:
		postproc cell content/.append style={
			/pgfplots/table/@cell content/.add={$\bf}{$},
		},
		postproc cell content/.append style={
			/pgfplots/table/@cell content/.add={}{\EUR{}},
		}
	}]
	{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstableset{
	create on use/slopes1/.style=
		{create col/gradient loglog={dof}{error1}}}
\pgfplotstabletypeset[
	columns={dof,error1,slopes1},
	columns/error1/.style={sci,sci zerofill},
	columns/slopes1/.style={
		postproc cell content/.append code={%
			\ifnum\pgfplotstablerow=0
				\pgfkeyssetvalue{/pgfplots/table/@cell content}{\ensuremath{-}}%
			\fi
		}%
	}]
	{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	% Requires 
% \usepackage{pgfcalendar}
% plotdata/accounts.dat contains:
%
% date              account1  account2  account3
% 2008-01-03        60        1200      400
% 2008-02-06        120       1600      410
% 2008-03-15        -10       1600      410
% 2008-04-01        1800      500       410
% 2008-05-20        2300      500       410
% 2008-06-15        800       1920      410
\pgfplotstabletypeset[
	columns={date,account1},
	column type=r,
	columns/date/.style={date type={\monthname\ \year}},
	columns/account1/.style={fonts by sign={}{\color{red}}}
]
	{plotdata/accounts.dat}
 
	
		
		[.tex]
		[.pdf]
	
	% this key setting could be provided in the document's preamble:
\pgfplotstableset{
	% define how the 'new' column shall be filled:
	create on use/new/.style={create col/set list={4,5,6,7,...,10}}}
% create a new table with 11 rows and column 'new':
\pgfplotstablenew[columns={new}]{11}\loadedtable
% show it:
\pgfplotstabletypeset[empty cells with={---}]\loadedtable
 
	
		
		[.tex]
		[.pdf]
	
	% create a new table with 11 rows and column 'new':
\pgfplotstablenew[
	% define how the 'new' column shall be filled:
	create on use/new/.style={create col/expr={factorial(15+\pgfplotstablerow)}},
	columns={new}]
	{11}
	\loadedtable
% show it:
\pgfplotstabletypeset\loadedtable
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstableread{pgfplotstable.example1.dat}\loadedtable
\pgfplotstablecreatecol[
	create col/assign/.code={%
		\getthisrow{level}\entry
		\getnextrow{level}\nextentry
		\edef\entry{thisrow=\entry; nextrow=\nextentry. 
			(\#\pgfplotstablerow/\pgfplotstablerows)}%
		\pgfkeyslet{/pgfplots/table/create col/next content}\entry
	}]
	{new}\loadedtable
\pgfplotstabletypeset[
	column type=l,
	columns={level,new},
	columns/new/.style={string type}
]\loadedtable
 
	
		
		[.tex]
		[.pdf]
	
	% requires \usepackage{array}
\pgfplotstableset{% could be used in preamble
	create on use/quot1/.style=
		{create col/quotient={error1}}}
\pgfplotstabletypeset[
	columns={error1,quot1},
	columns/error1/.style={sci,sci zerofill},
	columns/quot1/.style={dec sep align}]
{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstableset{
	create on use/my new col/.style={create col/set={--empty--}},
	columns/my new col/.style={string type}
}
\pgfplotstabletypeset[
	columns={level,my new col},
]{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstableset{
	create on use/my new col/.style={
		create col/set list={A,B,C,4,50,55,...,100}},
	columns/my new col/.style={string type}
}
\pgfplotstabletypeset[
	columns={level,my new col},
]{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstableset{
	create on use/new/.style={create col/copy={level}}
}
\pgfplotstabletypeset[
	columns={level,new},
	columns/new/.style={column name=Copy of level}
]{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstableset{
	create on use/new/.style={
		create col/expr={\thisrow{level}*2}}
}
\pgfplotstabletypeset[
	columns={level,new},
	columns/new/.style={column name=$2\cdot $level}
]{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstableset{
	create on use/new/.style={
		create col/expr={\pgfmathaccuma + \thisrow{level}}},
	create on use/new2/.style={
		create col/expr accum={\pgfmathaccuma * \thisrow{level}}{1}%<- start with `1'
	}
}
\pgfplotstabletypeset[
	columns={level,new,new2},
	columns/new/.style={column name=$\sum$level},
	columns/new2/.style={column name=$\prod$level}
]{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	% requires \usepackage{array}
\pgfplotstableset{% configuration, for example, in preamble:
	create on use/quot1/.style={create col/quotient=error1},
	create on use/quot2/.style={create col/quotient=error2},
	columns={error1,error2,quot1,quot2},
	%
	% display styles:
	columns/error1/.style={sci,sci zerofill},
	columns/error2/.style={sci,sci zerofill},
	columns/quot1/.style={dec sep align},
	columns/quot2/.style={dec sep align}
}
\pgfplotstabletypeset{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	% requires \usepackage{array}
\pgfplotstabletypeset[% here, configuration options apply only to this single statement:
	create on use/rate1/.style={create col/dyadic refinement rate={error1}},
	create on use/rate2/.style={create col/dyadic refinement rate={error2}},
	columns={error1,error2,rate1,rate2},
	columns/error1/.style={sci,sci zerofill},
	columns/error2/.style={sci,sci zerofill},
	columns/rate1/.style={dec sep align},
	columns/rate2/.style={dec sep align}]
	{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	% requires \usepackage{array}
\pgfplotstableset{% configuration, for example in preamble:
	create on use/slopes1/.style={create col/gradient loglog={dof}{error1}},
	create on use/slopes2/.style={create col/gradient loglog={dof}{error2}},
	columns={dof,error1,error2,slopes1,slopes2},
	% display styles:
	columns/dof/.style={int detect},
	columns/error1/.style={sci,sci zerofill},
	columns/error2/.style={sci,sci zerofill},
	columns/slopes1/.style={dec sep align},
	columns/slopes2/.style={dec sep align}
}
\pgfplotstabletypeset{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	% requires \usepackage{array}
\pgfplotstableset{% configuration, for example in preamble:
	create on use/slopes1/.style={create col/gradient semilogy={level}{error1}},
	columns={level,error1,slopes1},
	% display styles:
	columns/level/.style={int detect},
	columns/error1/.style={sci,sci zerofill,sci subscript},
	columns/slopes1/.style={dec sep align}
}
\pgfplotstabletypeset{pgfplotstable.example1.dat}
 
	
		
		[.tex]
		[.pdf]
	
	% load table from somewhere:
\pgfplotstableread{
	x y
	1 1 
	2 4
	3 9
	4 16
	5 25
	6 36
}\loadedtbl
% create the `regression' column:
\pgfplotstablecreatecol[linear regression]
	{regression}
	{\loadedtbl}
% store slope
\xdef\slope{\pgfplotstableregressiona}
\pgfplotstabletypeset\loadedtbl\\
The slope is `\slope'.
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstablenew[
	create on use/cut/.style={create col/function graph cut y=
		{2.5e-4} % search for fixed L2 = 2.5e-4
		{x=Basis,y=L2,ymode=log,xmode=log} % double log, each function is L2(Basis)
		% now, provide each single function f_i(Basis):
		{{table=plotdata/newexperiment1.dat},{table=plotdata/newexperiment2.dat}}
	},
	columns={cut}]
	{2} 
	\loadedtable
% Show the data:
\pgfplotstabletypeset{\loadedtable}
\begin{tikzpicture}
\begin{loglogaxis}
	\addplot table[x=Basis,y=L2] {plotdata/newexperiment1.dat};
	\addplot table[x=Basis,y=L2] {plotdata/newexperiment2.dat};
	\draw[blue!30!white] (axis cs:1,2.5e-4) -- (axis cs:1e5,2.5e-4);
	\node[pin=-90:{$x=53.66$}] at (axis cs:53.66,2.5e-4) {};
	\node[pin=45:{$x=601.83$}] at (axis cs:601.83,2.5e-4) {};
\end{loglogaxis}
\end{tikzpicture}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstablenew[
	% same as above...
	create on use/cut/.style={create col/function graph cut y=
		{2.5e-4}% search for fixed L2 = 2.5e-4
		{x=Basis,y=L2,ymode=log,xmode=log,
		 foreach={\i in {1,2}}{plotdata/newexperiment\i.dat}}%
		{}% just leave this empty.
	},
	columns={cut}]
	{2} 
	\loadedtable
% Show the data:
\pgfplotstabletypeset{\loadedtable}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstableread{pgfplotstable.example1.dat}\loadedtable
\pgfplotstablemodifyeachcolumnelement{error1}\of\loadedtable\as\cell{%
	\edef\cell{\#\pgfplotstablerow: \cell}%
}
\pgfplotstabletypeset[columns=error1,string type]{\loadedtable}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletypeset[string type]{pgfplotstable.example3.dat}
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletranspose\loadedtable{pgfplotstable.example3.dat}
\pgfplotstabletypeset[string type]\loadedtable
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletranspose[colnames from=c]\loadedtable{pgfplotstable.example3.dat}
\pgfplotstabletypeset[string type]\loadedtable
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletranspose[input colnames to=Input]\loadedtable{pgfplotstable.example3.dat}
\pgfplotstabletypeset[string type]\loadedtable
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletranspose[input colnames to=]\loadedtable{pgfplotstable.example3.dat}
\pgfplotstabletypeset[string type]\loadedtable
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstabletranspose[columns={a,b}]\loadedtable{pgfplotstable.example3.dat}
\pgfplotstabletypeset[string type]\loadedtable
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstablesort\result{%
    a      b  c 
    19     2 [a]
    -6   -14 [b]
     4   -14 [c]
   -11    -9 [d]
    11    14 [e]
    -9    -9 [f]
     1    13 [g]
     8   -10 [h]
    16    18 [i]
    19    -6 [j]
}
\pgfplotstabletypeset[columns/c/.style={string type}]{\result}%
 
	
		
		[.tex]
		[.pdf]
	
	\pgfplotstablesort[sort cmp=string <]\result{% 'Header' is the column name:
	Header
	the
	quick
	brown
	fox
	jumps
	over
	the
	lazy
	dog
}
\pgfplotstabletypeset[string type]{\result}%