PGFPlots Gallery

The following graphics have been generated with the LaTeX Packages PGFPlots and PGFPlotsTable.

They have been extracted from the reference manuals. PGFPlots Home

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ xmin=-3, xmax=3, ymin=-3, ymax=3, extra x ticks={-1,1}, extra y ticks={-2,2}, extra tick style={grid=major}, ] \draw[red] \pgfextra{ \pgfpathellipse{\pgfplotspointaxisxy{0}{0}} {\pgfplotspointaxisdirectionxy{1}{0}} {\pgfplotspointaxisdirectionxy{0}{2}} % see also the documentation of % 'axis direction cs' which % allows a simpler way to draw this ellipse }; \draw[blue] \pgfextra{ \pgfpathellipse{\pgfplotspointaxisxy{0}{0}} {\pgfplotspointaxisdirectionxy{1}{1}} {\pgfplotspointaxisdirectionxy{0}{2}} }; \addplot [only marks,mark=*] coordinates { (0,0) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ xlabel=Cost, ylabel=Error] \addplot[color=red,mark=x] coordinates { (2,-2.8559703) (3,-3.5301677) (4,-4.3050655) (5,-5.1413136) (6,-6.0322865) (7,-6.9675052) (8,-7.9377747) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ xlabel=$x$, ylabel={$f(x) = x^2 - x +4$} ] % use TeX as calculator: \addplot {x^2 - x +4}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ xlabel=$x$, ylabel=$\sin(x)$ ] % invoke external gnuplot as % calculator: \addplot gnuplot[id=sin]{sin(x)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ height=9cm, width=9cm, grid=major, ] \addplot {-x^5 - 242}; \addlegendentry{model} \addplot coordinates { (-4.77778,2027.60977) (-3.55556,347.84069) (-2.33333,22.58953) (-1.11111,-493.50066) (0.11111,46.66082) (1.33333,-205.56286) (2.55556,-341.40638) (3.77778,-1169.24780) (5.00000,-3269.56775) }; \addlegendentry{estimate} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{loglogaxis}[xlabel=Cost,ylabel=Gain] \addplot[color=red,mark=x] coordinates { (10,100) (20,150) (40,225) (80,340) (160,510) (320,765) (640,1150) }; \end{loglogaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{loglogaxis}[ xlabel=Cost, ylabel=Error] \addplot[color=red,mark=x] coordinates { (5, 8.31160034e-02) (17, 2.54685628e-02) (49, 7.40715288e-03) (129, 2.10192154e-03) (321, 5.87352989e-04) (769, 1.62269942e-04) (1793, 4.44248889e-05) (4097, 1.20714122e-05) (9217, 3.26101452e-06) }; \addplot[color=blue,mark=*] table[x=Cost,y=Error] {pgfplots.testtable}; \legend{Case 1,Case 2} \end{loglogaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{semilogyaxis}[ xlabel=Index,ylabel=Value] \addplot[color=blue,mark=*] coordinates { (1,8) (2,16) (3,32) (4,64) (5,128) (6,256) (7,512) }; \end{semilogyaxis}% \end{tikzpicture}%

[.tex] [.pdf]
\begin{tikzpicture} \begin{loglogaxis}[ xlabel={Degrees of freedom}, ylabel={$L_2$ Error} ] \addplot coordinates { (5,8.312e-02) (17,2.547e-02) (49,7.407e-03) (129,2.102e-03) (321,5.874e-04) (769,1.623e-04) (1793,4.442e-05) (4097,1.207e-05) (9217,3.261e-06) }; \addplot coordinates{ (7,8.472e-02) (31,3.044e-02) (111,1.022e-02) (351,3.303e-03) (1023,1.039e-03) (2815,3.196e-04) (7423,9.658e-05) (18943,2.873e-05) (47103,8.437e-06) }; \addplot coordinates{ (9,7.881e-02) (49,3.243e-02) (209,1.232e-02) (769,4.454e-03) (2561,1.551e-03) (7937,5.236e-04) (23297,1.723e-04) (65537,5.545e-05) (178177,1.751e-05) }; \addplot coordinates{ (11,6.887e-02) (71,3.177e-02) (351,1.341e-02) (1471,5.334e-03) (5503,2.027e-03) (18943,7.415e-04) (61183,2.628e-04) (187903,9.063e-05) (553983,3.053e-05) }; \addplot coordinates{ (13,5.755e-02) (97,2.925e-02) (545,1.351e-02) (2561,5.842e-03) (10625,2.397e-03) (40193,9.414e-04) (141569,3.564e-04) (471041,1.308e-04) (1496065,4.670e-05) }; \legend{$d=2$,$d=3$,$d=4$,$d=5$,$d=6$} \end{loglogaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{loglogaxis}[clickable coords= {Level \thisrow{level} (q=\thisrow{q})}] \addplot table[x=dof,y=error] { level dof error q 1 4 2.50000000e-01 48 2 16 6.25000000e-02 25 3 64 1.56250000e-02 41 4 256 3.90625000e-03 8 5 1024 9.76562500e-04 22 6 4096 2.44140625e-04 46 7 16384 6.10351562e-05 40 8 65536 1.52587891e-05 3 9 262144 3.81469727e-06 1 10 1048576 9.53674316e-07 9 }; \end{loglogaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[% clickable coords={(xy): \thisrow{label}},% scatter/classes={% a={mark=square*,blue},% b={mark=triangle*,red},% c={mark=o,draw=black}}] \addplot[scatter,only marks,% scatter src=explicit symbolic]% table[meta=label] { x y label 0.1 0.15 a 0.45 0.27 c 0.02 0.17 a 0.06 0.1 a 0.9 0.5 b 0.5 0.3 c 0.85 0.52 b 0.12 0.05 a 0.73 0.45 b 0.53 0.25 c 0.76 0.5 b 0.55 0.32 c }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{loglogaxis}[clickable coords code={% \pgfmathprintnumberto[verbatim,precision=1]% {\thisrow{error}}% \error% \pgfmathprintnumberto[verbatim,frac]% {\thisrow{frac}}% \fraccomp% \edef\pgfplotsretval{error \error, R=\fraccomp}% }]% \addplot table[x=dof,y=error] { level dof error frac 1 4 2.50000000e-01 0.5 2 16 6.25000000e-02 0.75 3 64 1.56250000e-02 0.1 4 256 3.90625000e-03 0.2 5 1024 9.76562500e-04 0.5 6 4096 2.44140625e-04 0.8 7 16384 6.10351562e-05 0.125 8 65536 1.52587891e-05 0.725 9 262144 3.81469727e-06 0.625 10 1048576 9.53674316e-07 1 }; \end{loglogaxis} \end{tikzpicture}

[.tex] [.pdf]
% Example using groupplots library \begin{tikzpicture} \begin{groupplot}[group style={group size=2 by 2},height=3cm,width=3cm] \nextgroupplot \addplot coordinates {(0,0) (1,1) (2,2)}; \nextgroupplot \addplot coordinates {(0,2) (1,1) (2,0)}; \nextgroupplot \addplot coordinates {(0,2) (1,1) (2,1)}; \nextgroupplot \addplot coordinates {(0,2) (1,1) (1,0)}; \end{groupplot} \end{tikzpicture} % Same example created as done without the library \begin{tikzpicture} \begin{axis}[name=plot1,height=3cm,width=3cm] \addplot coordinates {(0,0) (1,1) (2,2)}; \end{axis} \begin{axis}[name=plot2,at={($(plot1.east)+(1cm,0)$)},anchor=west,height=3cm,width=3cm] \addplot coordinates {(0,2) (1,1) (2,0)}; \end{axis} \begin{axis}[name=plot3,at={($(plot1.south)-(0,1cm)$)},anchor=north,height=3cm,width=3cm] \addplot coordinates {(0,2) (1,1) (2,1)}; \end{axis} \begin{axis}[name=plot4,at={($(plot2.south)-(0,1cm)$)},anchor=north,height=3cm,width=3cm] \addplot coordinates {(0,2) (1,1) (1,0)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{groupplot}[group style={group size=3 by 1},xmin=0,ymin=0,height=4cm,width=5cm,no markers] \nextgroupplot \addplot[very thick] file {plotdata/group-1.dat}; \draw[red,dashed,thick] (axis cs:0,0) rectangle (axis cs:5,30); \nextgroupplot[xmax=5,ymax=30] \addplot[very thick] file {plotdata/group-1.dat}; \draw[red,dashed,thick] (axis cs:3,10) rectangle (axis cs:5,25); \nextgroupplot[xmin=3,xmax=5,ymin=10,ymax=25] \addplot[very thick] file {plotdata/group-1.dat}; \end{groupplot} \draw[thick,blue,->,shorten >=2pt,shorten <=2pt] (group c1r1.east) -- (group c2r1.west); \draw[thick,blue,->,shorten >=2pt,shorten <=2pt] (group c2r1.east) -- (group c3r1.west); \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[nodes near coords={(\coordindex)}, title={\texttt{patch type=quadratic spline}}] \addplot[ mark=*, patch,mesh,% without mesh, pgfplots tries to fill patch type=quadratic spline] coordinates { % left, right, middle-> first segment (0,0) (1,1) (0.5,0.5^2) % left, right, middle-> second segment (1.2,1) (2.2,1) (1.7,2) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[nodes near coords={(\coordindex)}, title={\texttt{patch type=cubic spline}}] \addplot[ mark=*, patch,mesh, patch type=cubic spline] coordinates { % left, right, left middle, right middle (-1,-1) (1,1) (-1/3,{(-1/3)^3}) (1/3,{(1/3)^3}) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[nodes near coords={(\coordindex)}, title=Rectangle from matrix input] % note that surf implies 'patch type=rectangle' \addplot3[surf,shader=interp,samples=2, patch type=rectangle] {x*y}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[nodes near coords={(\coordindex)}, title=Rectangle from patch input] \addplot3[patch,shader=interp,patch type=rectangle] coordinates { (0,0,1) (1,0,0) (1,1,0) (0,1,0) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[nodes near coords={(\coordindex)}, title=Bilinear from $2\times 2$ matrix input] % note that surf implies 'patch type=rectangle' \addplot3[surf,shader=interp,samples=2, patch type=bilinear] {x*y}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[nodes near coords={(\coordindex)}, title=Bilinear from $4$--point patch input] \addplot3[patch,shader=interp,patch type=bilinear] coordinates { (0,0,1) (1,0,0) (1,1,0) (0,1,0) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[enlargelimits, nodes near coords={(\coordindex)}, title=Single Triangle patch] \addplot3[patch,shader=interp] coordinates { (0,0,1) (1,0,0) (1,1,0) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[nodes near coords={(\coordindex)}, title=Quadratic Triangle] \addplot[patch,patch type=triangle quadr, shader=interp,point meta=explicit] coordinates { (0,0) [1] (5,4) [2] (0,7) [3] (2,3) [1] (3,6) [2] (-1,4) [3] }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[nodes near coords={(\coordindex)}, title=Quadratic Triangle] \addplot3[patch,patch type=triangle quadr, shader=interp] coordinates { (0,0,1) (5,4,0) (0,7,0) (2,3,0) (3,6,0) (-1,4,0) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[nodes near coords={(\coordindex)}, title=Single Biquadratic Quadrilateral] \addplot[patch,patch type=biquadratic, shader=interp,point meta=explicit] coordinates { (0,0) [1] (6,1) [2] (5,5) [3] (-1,5) [4] (3,1) [1] (6,3) [2] (2,6) [3] (0,3) [4] (3,3.75) [4] }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[nodes near coords={(\coordindex)}, title=Single Biquadratic Quadrilateral] \addplot3[patch,patch type=biquadratic,shader=interp] coordinates { (0,0,1) (6,1,0) (5,5,0) (-1,5,0) (3,1,0) (6,3,0) (2,6,0) (0,3,0) (3,3.75,0) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot3[patch,patch refines=3, shader=faceted interp, patch type=biquadratic] table[z expr=x^2-y^2] { x y -2 -2 2 -2 2 2 -2 2 0 -2 2 0 0 2 -2 0 0 0 }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[nodes near coords={(\coordindex)}, width=12cm, title=A Coons Patch] \addplot[mark=*,patch,patch type=coons, shader=interp,point meta=explicit] coordinates { (0,0) [0] % first corner (1,-1) [0] % Bezier control point between (0) and (3) (4,0.7) [0] % Bezier control point between (0) and (3) % (3,2) [1] % second corner (4,3.5) [1] % Bezier control point between (3) and (6) (7,2) [1] % Bezier control point between (3) and (6) % (7,1) [2] % third corner (6,0.6) [2] % Bezier control point between (6) and (9) (4.5,-0.5) [2] % Bezier control point between (6) and (9) % (5,-2) [3] % fourth corner (4,-2.5) [3] % Bezier control point between (9) and (0) (-1,-2) [3] % Bezier control point between (9) and (0) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[view/h=120,xlabel=$x$,ylabel=$y$] \addplot3[ opacity=0.5, table/row sep=\\, patch, patch type=polygon, vertex count=5, patch table with point meta={% % pt1 pt2 pt3 pt4 pt5 cdata 0 1 7 2 2 0\\ 1 6 5 5 5 1\\ 1 5 4 2 7 2\\ 2 4 3 3 3 3\\ }] table { x y z\\ 0 2 0\\%0 2 2 0\\%1 0 1 3\\%2 0 0 3\\%3 1 0 3\\%4 2 0 2\\%5 2 0 0\\%6 1 1 2\\%7 }; % replicate the vertex list to show \coordindex: \addplot3[only marks,nodes near coords=\coordindex] table[row sep=\\] { 0 2 0\\ 2 2 0\\ 0 1 3\\ 0 0 3\\ 1 0 3\\ 2 0 2\\ 2 0 0\\ 1 1 2\\ }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\foreach \level in {0,1,2} {% \begin{tikzpicture} \begin{axis}[ nodes near coords={(\coordindex)}, footnotesize, title={patch refines=\level}] \addplot3[patch,patch type=triangle quadr, shader=faceted interp,patch refines=\level] coordinates { (0,0,0) (5,4,0) (0,7,0) (2,3,0) (3,6,1) (-1,4,0) }; \end{axis} \end{tikzpicture} }

[.tex] [.pdf]
\foreach \level in {0,1,2} {% \begin{tikzpicture} \begin{axis}[ nodes near coords={(\coordindex)}, footnotesize, title={Triangulation + \level\ refines}] \addplot3[patch,patch type=biquadratic,shader=faceted interp, patch to triangles,patch refines=\level] coordinates { (0,0,0) (6,1,0) (5,5,0) (-1,5,0) (3,1,0) (6,3,0) (2,6,0) (0,3,0) (3,3.75,1) }; \end{axis} \end{tikzpicture}% }

[.tex] [.pdf]
\foreach \level in {0,1,2} {% \begin{tikzpicture} \begin{axis}[ footnotesize, title={Faceted + \level\ refines}] \addplot3[patch,patch type=biquadratic,shader=faceted, patch refines=\level] coordinates { (0,0,1) (6,1,0) (5,5,0) (-1,5,0) (3,1,0) (6,3,0) (2,6,0) (0,3,0) (3,3.75,0) }; \end{axis} \end{tikzpicture} }

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ title={Grids with shader=faceted}] \addplot3[patch,patch type=biquadratic, shader=faceted,patch refines=3] coordinates { (0,0,1) (6,1,1.6) (5,5,1.3) (-1,5,0) (3,1,0) (6,3,0.4) (2,6,1.1) (0,3,0.9) (3,3.75,0.5) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ title={Grids with shader=faceted interp}] \addplot3[patch,patch type=biquadratic, shader=faceted interp,patch refines=3] coordinates { (0,0,1) (6,1,1.6) (5,5,1.3) (-1,5,0) (3,1,0) (6,3,0.4) (2,6,1.1) (0,3,0.9) (3,3.75,0.5) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ title={Mesh on top of patches (i): obscured}] \addplot3[patch,patch type=biquadratic,shader=interp, patch refines=3] coordinates { (0,0,1) (6,1,1.6) (5,5,1.3) (-1,5,0) (3,1,0) (6,3,0.4) (2,6,1.1) (0,3,0.9) (3,3.75,0.5) }; \addplot3[patch,patch type=biquadratic,mesh,black, patch refines=3] coordinates { (0,0,1) (6,1,1.6) (5,5,1.3) (-1,5,0) (3,1,0) (6,3,0.4) (2,6,1.1) (0,3,0.9) (3,3.75,0.5) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ title={Mesh on top of patches (ii): unobscured\\ \tiny Geometry provided by Prof. Chernov, Bonn}, title style={align=center}, view={156}{28}] \addplot3[patch,patch type=bilinear, shader=interp, patch table=plotdata/patchexample_conn.dat] file {plotdata/patchexample_verts.dat}; \addplot3[patch,patch type=bilinear, mesh,black, patch table=plotdata/patchexample_conn.dat] file {plotdata/patchexample_verts.dat}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ title={Separate Grids (iii)}] \addplot3[patch,patch type=biquadratic,shader=interp, patch refines=3] coordinates { (0,0,1) (6,1,1.6) (5,5,1.3) (-1,5,0) (3,1,0) (6,3,0.4) (2,6,1.1) (0,3,0.9) (3,3.75,0.5) }; \addplot3[patch,patch type=biquadratic, mesh,black, z filter/.code={\def\pgfmathresult{1.8}}, patch refines=3] coordinates { (0,0,1) (6,1,1.6) (5,5,1.3) (-1,5,0) (3,1,0) (6,3,0.4) (2,6,1.1) (0,3,0.9) (3,3.75,0.5) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{polaraxis} \addplot coordinates {(0,1) (90,1) (180,1) (270,1)}; \end{polaraxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{polaraxis} \addplot+[domain=0:3] (360*x,x); % (angle,radius) \end{polaraxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{polaraxis} \addplot+[mark=none,domain=0:720,samples=600] {sin(2*x)*cos(2*x)}; % equivalent to (x,{sin(..)cos(..)}), i.e. % the expression is the RADIUS \end{polaraxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{polaraxis}[ xtick={0,90,180,270}, title=A polar axis] \addplot coordinates {(0,1) (45,1)}; \addlegendentry{First} \addplot coordinates {(180,0.5) (0,0)}; \addlegendentry{Second} \end{polaraxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{polaraxis}[title={Degrees and/or Radians}] \addplot coordinates {(0,1) (90,1) (180,1) (270,1)}; \addlegendentry{Deg} \addplot+[data cs=polarrad] coordinates {(0,1.5) (pi/2,1.5) (pi,1.5) (pi*3/2,1.5)}; \addlegendentry{Rad} \end{polaraxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{polaraxis}[title=Cartesian Input] \addplot+[data cs=cart] coordinates {(1,0) (0,1) (-1,0) (0,-1)}; \end{polaraxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{polaraxis} \addplot3[contour gnuplot,domain=-3:3, data cs=cart] {exp(-x^2-y^2)}; \end{polaraxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{polaraxis} \addplot+[polar comb] coordinates {(300,1) (20,0.3) (40,0.5) (120,1) (200,0.4)}; \end{polaraxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{polaraxis}[xmin=45,xmax=360] \addplot coordinates {(0,1) (90,1) (180,1) (270,1)}; \end{polaraxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{polaraxis}[xmin=90,xmax=270] \addplot coordinates {(0,1) (90,1) (180,1) (270,1)}; \end{polaraxis} \end{tikzpicture}~% \begin{tikzpicture} \begin{polaraxis}[xmin=270,xmax=420] \addplot coordinates {(0,1) (90,1) (180,1) (270,1)}; \end{polaraxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{polaraxis}[ymin=0.3] \addplot coordinates {(0,1) (90,1) (180,1) (270,1)}; \end{polaraxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{polaraxis}[xmin=45,xmax=405] \addplot coordinates {(0,1) (90,1) (180,1) (270,1)}; \end{polaraxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{ternaryaxis} \addplot3 coordinates { (0.81, 0.19, 0.00) (0.76, 0.17, 0.07) (0.66, 0.16, 0.16) (0.76, 0.07, 0.17) (0.81, 0.00, 0.19) }; \addplot3 coordinates { (0.85, 0.15, 0.00) (0.82, 0.13, 0.05) (0.73, 0.14, 0.13) (0.82, 0.06, 0.13) (0.84, 0.00, 0.16) }; \legend{$10$\textdegree, $20$\textdegree} \end{ternaryaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{ternaryaxis}[xlabel=A,ylabel=B,zlabel=C] \addplot3 coordinates { (0.81, 0.19, 0.00) (0.76, 0.17, 0.07) (0.66, 0.16, 0.16) (0.76, 0.07, 0.17) (0.81, 0.00, 0.19) }; \addplot3 coordinates { (0.85, 0.15, 0.00) (0.82, 0.13, 0.05) (0.73, 0.14, 0.13) (0.82, 0.06, 0.13) (0.84, 0.00, 0.16) }; \node[pin=130:Deduced $z$,draw=black] at (axis cs:0.2,0.2) {}; \legend{$10$\textdegree, $20$\textdegree} \end{ternaryaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{ternaryaxis}[ title=Sloped labels and minor ticks, xlabel=Water, ylabel=D--Threonine, zlabel=L--Threonine, label style={sloped}, minor tick num=2, ] \addplot3 coordinates { (0.82, 0.18, 0.00) (0.75, 0.17, 0.08) (0.77, 0.12, 0.11) (0.75, 0.08, 0.17) (0.81, 0.00, 0.19) }; \addplot3 coordinates { (0.75, 0.25, 0.00) (0.69, 0.25, 0.06) (0.64, 0.24, 0.12) (0.655, 0.23, 0.115) (0.67, 0.17, 0.16) (0.66, 0.12, 0.22) (0.64, 0.11, 0.25) (0.69, 0.05, 0.26) (0.76, 0.01, 0.23) }; \end{ternaryaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{ternaryaxis}[ title=Sloped labels and minor grids, xlabel=Water, ylabel=D--Threonine, zlabel=L--Threonine, label style={sloped}, minor tick num=2, grid=both, ] \addplot3 coordinates { (0.82, 0.18, 0.00) (0.75, 0.17, 0.08) (0.77, 0.12, 0.11) (0.75, 0.08, 0.17) (0.81, 0.00, 0.19) }; \addplot3 coordinates { (0.75, 0.25, 0.00) (0.69, 0.25, 0.06) (0.64, 0.24, 0.12) (0.655, 0.23, 0.115) (0.67, 0.17, 0.16) (0.66, 0.12, 0.22) (0.64, 0.11, 0.25) (0.69, 0.05, 0.26) (0.76, 0.01, 0.23) }; \end{ternaryaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{ternaryaxis}[ title=Want--be--Stainless Steel, xlabel=Weight Percent Chromium, ylabel=Weight Percent Iron, zlabel=Weight Percent Nickel, label style=sloped, area style, ] \addplot3 table { A B C 1 0 0 0.5 0.4 0.1 0.45 0.52 0.03 0.36 0.6 0.04 0.1 0.9 0 }; \addlegendentry{Cr} \addplot3 table { A B C 1 0 0 0.5 0.4 0.1 0.28 0.35 0.37 0.4 0 0.6 }; \addlegendentry{Cr+$\gamma$FeNi} \addplot3 table { 0.4 0 0.6 0.28 0.35 0.37 0.25 0.6 0.15 0.1 0.9 0 0 1 0 0 0 1 }; \addlegendentry{$\gamma$FeNi} \addplot3 table { 0.1 0.9 0 0.36 0.6 0.04 0.25 0.6 0.15 }; \addlegendentry{Cr+$\gamma$FeNi} \addplot3 table { 0.5 0.4 0.1 0.45 0.52 0.03 0.36 0.6 0.04 0.25 0.6 0.15 0.28 0.35 0.37 }; \addlegendentry{$\sigma$+$\gamma$FeNi} \node[inner sep=0.5pt,circle,draw,fill=white,pin=-15:\footnotesize Stainless Steel] at (axis cs:0.18,0.74,0.08) {}; \end{ternaryaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{ternaryaxis}[ title=Want--be--Stainless Steel, xlabel=Weight Percent Chromium, ylabel=Weight Percent Iron, zlabel=Weight Percent Nickel, label style=sloped, ] % plotdata/pgfplotsternary.example1.dat: % % Chromium Iron Nickel Temperature % 0.90 0.0 0.10 1700 % 0.85 0.14 0.00 1700 % % 0.85 0.00 0.15 1600 % 0.78 0.22 0.00 1600 % 0.71 0.29 0.00 1600 % .... \addplot3[contour prepared={labels over line}, point meta=\thisrow{Temperature}] table[x=Chromium,y=Iron,z=Nickel] {plotdata/pgfplotsternary.example1.dat}; \end{ternaryaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{ternaryaxis}[ ternary limits relative, title={Data range $[0,1]$, limits relative}, area style] \addplot3 coordinates { (0.2,0.8,0) (0.31,0.4,0.29) (0.34,0.2,0.46) (0.4,0,0.6) (1,0,0) }; \addplot3 coordinates { (0.4,0,0.6) (0.34,0.2,0.46) (0.31,0.4,0.29) (0.14,0.46,0.4) (0,0.37,0.63) (0,0,1) }; \node[fill=white] at (axis cs:0.56,0.28,0.16) {$F 42$}; \node[fill=white] at (0.7,0.2) {$F 43$}; \end{ternaryaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{ternaryaxis}[ xmax=500,ymin=1,ymax=2, ternary limits relative, title={Data range $x\in[0,500]$, $y\in[1,2]$, $z\in[0,1]$ limits relative}, area style] \addplot3 coordinates { (100,1.8,0) (155,1.4,0.29) (170,1.2,0.46) (200,1,0.6) (500,1,0) }; \addplot3 coordinates { (200,1,0.6) (170,1.2,0.46) (155,1.4,0.29) (70,1.46,0.4) (0,1.37,0.63) (0,1,1) }; \node[fill=white] at (axis cs:280,1.28,0.16) {$F 42$}; \node[fill=white] at (0.7,0.2) {$F 43$}; \end{ternaryaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{ternaryaxis}[ ternary limits relative=false, xmax=500,ymin=1,ymax=2, title={Data range $x\in[0,500]$, $y\in[1,2]$, $z\in[0,1]$ limits absolute}, footnotesize, % just for the sake of demonstration... area style] \addplot3 coordinates { (100,1.8,0) (155,1.4,0.29) (170,1.2,0.46) (200,1,0.6) (500,1,0) }; \addplot3 coordinates { (200,1,0.6) (170,1.2,0.46) (155,1.4,0.29) (70,1.46,0.4) (0,1.37,0.63) (0,1,1) }; \node[fill=white] at (axis cs:280,1.28,0.16) {$F 42$}; \node[fill=white] at (0.7,0.2) {$F 43$}; \end{ternaryaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{ternaryaxis}[ title=Cartesian Annotations, clip=false] \addplot3 coordinates { (0.1,0.5,0.4) (0.2,0.5,0.3) (0.3,0.6,0.1) }; \node[fill=white,draw] at (0,0) {$y (0,0)$}; \node[fill=white,draw] at (1,0) {$z (1,0)$}; \node[fill=white,draw] at (0.5,{sqrt(3)/2}) {$x (\frac12,\frac{\sqrt3}{2})$}; \draw[red,-stealth] (0.5,0) -- (0.5,0.7); \end{ternaryaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{ternaryaxis}[ xlabel=x (IPA), ylabel=y (water), zlabel=z (propene), axis on top, ] % plotdata/ternary_data.txt is a table of the form %A_propene A_water A_IPA B_propene B_water B_IPA % 0.0009 0.9990 0 0.9333 0.0667 0 % 0.0009 0.9988 0.0002 0.9303 0.0665 0.0032 % 0.0011 0.9975 0.0013 0.9135 0.0673 0.0191 % 0.0013 0.9962 0.0024 0.8956 0.0693 0.0351 %... \addplot3[tieline,fill=blue!10] table [x=A_IPA,y=A_water,z=A_propene] {plotdata/ternary_data.txt}; \end{ternaryaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{ternaryaxis}[ xlabel=x (IPA), ylabel=y (water), zlabel=z (propene), axis on top, ] % plotdata/ternary_data.txt is a table of the form %A_propene A_water A_IPA B_propene B_water B_IPA % 0.0009 0.9990 0 0.9333 0.0667 0 % 0.0009 0.9988 0.0002 0.9303 0.0665 0.0032 % 0.0011 0.9975 0.0013 0.9135 0.0673 0.0191 % 0.0013 0.9962 0.0024 0.8956 0.0693 0.0351 %... \addplot3[ tieline={each nth tie=5}, fill=blue!10, ] table [x=A_IPA,y=A_water,z=A_propene] {plotdata/ternary_data.txt}; \end{ternaryaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{ternaryaxis}[ xlabel=x (IPA), ylabel=y (water), zlabel=z (propene), axis on top, ] % plotdata/ternary_data.txt is a table of the form %A_propene A_water A_IPA B_propene B_water B_IPA % 0.0009 0.9990 0 0.9333 0.0667 0 % 0.0009 0.9988 0.0002 0.9303 0.0665 0.0032 % 0.0011 0.9975 0.0013 0.9135 0.0673 0.0191 % 0.0013 0.9962 0.0024 0.8956 0.0693 0.0351 %... \addplot3[ point meta=rand, tieline={ each nth tie=8, tieline style={contour prepared} }, fill=blue!10, ] table [x=A_IPA,y=A_water,z=A_propene] {plotdata/ternary_data.txt}; \end{ternaryaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[use units, x unit=m,x unit prefix=k, y unit=N,y unit prefix=m, xlabel=Distance,ylabel=Force] \addplot coordinates { (1,2.3) (2,2.7) (3,2.1) (4,1.8) (5,1.5) (6,1.1) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[change x base, x SI prefix=kilo,x unit=m, y SI prefix=milli,y unit=N, xlabel=Distance,ylabel=Force] \addplot coordinates { (1000,1) (2000,1.1) (3000,1.2) (4000,1.3) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot+[sharp plot] coordinates {(0,0) (1,2) (2,3)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot+[smooth] coordinates {(0,0) (1,2) (2,3)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot+[const plot] coordinates {(0,0.1) (0.1,0.15) (0.2,0.5) (0.3,0.62) (0.4,0.56) (0.5,0.58) (0.6,0.65) (0.7,0.6) (0.8,0.58) (0.9,0.55) (1,0.52)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ymin=0,ymax=1,enlargelimits=false] \addplot [const plot,fill=blue,draw=black] coordinates {(0,0.1) (0.1,0.15) (0.2,0.5) (0.3,0.62) (0.4,0.56) (0.5,0.58) (0.6,0.65) (0.7,0.6) (0.8,0.58) (0.9,0.55) (1,0.52)} \closedcycle; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot+[const plot mark right] coordinates {(0,0.1) (0.1,0.15) (0.2,0.5) (0.3,0.62) (0.4,0.56) (0.5,0.58) (0.6,0.65) (0.7,0.6) (0.8,0.58) (0.9,0.55) (1,0.52)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot+[const plot mark mid] coordinates {(0,0.1) (0.1,0.15) (0.2,0.5) (0.3,0.62) (0.4,0.56) (0.5,0.58) (0.6,0.65) (0.7,0.6) (0.8,0.58) (0.9,0.55) (1,0.52)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[samples=8] \addplot+[jump mark left,domain=-5:0] {4*x^2 - 5}; \addplot+[jump mark right,domain=-5:0] {0.7*x^3 + 50}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot+[jump mark mid] coordinates {(0,0.1) (0.1,0.15) (0.2,0.5) (0.3,0.62) (0.4,0.56) (0.5,0.58) (0.6,0.65) (0.7,0.6) (0.8,0.58) (0.9,0.55) (1,0.52)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot+[xbar] coordinates {(4,0) (1,1) (2,2) (5,3) (6,4) (1,5)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[xbar,enlargelimits=0.15] \addplot [draw=blue,pattern=horizontal lines light blue] coordinates {(10,5) (15,10) (5,15) (24,20) (30,25)}; \addplot [draw=black,pattern=horizontal lines dark blue] coordinates {(3,5) (5,10) (15,15) (20,20) (35,25)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ xbar, xmin=0, width=12cm, height=3.5cm, enlarge y limits=0.5, xlabel={\#participants}, symbolic y coords={no,yes}, ytick=data, nodes near coords, nodes near coords align={horizontal}, ] \addplot coordinates {(3,no) (7,yes)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ title=Uses lowest $x$ coords for xmin, xbar, width=12cm, height=3.5cm, enlarge y limits=0.5, xlabel={\#participants}, symbolic y coords={no,yes}, ytick=data, nodes near coords, nodes near coords align={horizontal}, ] \addplot coordinates {(1,no) (9,yes)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot+[ybar] plot coordinates {(0,3) (1,2) (2,4) (3,1) (4,2)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ x tick label style={ /pgf/number format/1000 sep=}, ylabel=Population, enlargelimits=0.15, legend style={at={(0.5,-0.15)}, anchor=north,legend columns=-1}, ybar, bar width=7pt, ] \addplot coordinates {(1930,50e6) (1940,33e6) (1950,40e6) (1960,50e6) (1970,70e6)}; \addplot coordinates {(1930,38e6) (1940,42e6) (1950,43e6) (1960,45e6) (1970,65e6)}; \addplot coordinates {(1930,15e6) (1940,12e6) (1950,13e6) (1960,25e6) (1970,35e6)}; \addplot[red,sharp plot,update limits=false] coordinates {(1910,4.3e7) (1990,4.3e7)} node[above] at (axis cs:1950,4.3e7) {Houses}; \legend{Far,Near,Here,Annot} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ ybar, enlargelimits=0.15, legend style={at={(0.5,-0.15)}, anchor=north,legend columns=-1}, ylabel={\#participants}, symbolic x coords={tool8,tool9,tool10}, xtick=data, nodes near coords, nodes near coords align={vertical}, ] \addplot coordinates {(tool8,7) (tool9,9) (tool10,4)}; \addplot coordinates {(tool8,4) (tool9,4) (tool10,4)}; \addplot coordinates {(tool8,1) (tool9,1) (tool10,1)}; \legend{used,understood,not understood} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ x tick label style={ /pgf/number format/1000 sep=}, ylabel=Population, enlargelimits=0.15, legend style={at={(0.5,-0.15)}, anchor=north,legend columns=-1}, ybar=5pt,% configures `bar shift' bar width=9pt, nodes near coords, point meta=y *10^-7 % the displayed number ] \addplot coordinates {(1930,50e6) (1940,33e6) (1950,40e6) (1960,50e6) (1970,70e6)}; \addplot coordinates {(1930,38e6) (1940,42e6) (1950,43e6) (1960,45e6) (1970,65e6)}; \legend{Far,Near} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ ybar, enlargelimits=0.15, legend style={at={(0.5,-0.2)}, anchor=north,legend columns=-1}, ylabel={\#participants}, symbolic x coords={excellent,good,neutral,% not good,poor}, xtick=data, nodes near coords, nodes near coords align={vertical}, x tick label style={rotate=45,anchor=east}, ] \addplot coordinates {(excellent,0) (good,8) (neutral,2) (not good,0) (poor,0)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot+[ybar interval] plot coordinates {(0,2) (0.1,1) (0.3,0.5) (0.35,4) (0.5,3) (0.6,2) (0.7,1.5) (1,1.5)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ybar interval, xtick=data, xticklabel interval boundaries, x tick label style= {rotate=90,anchor=east} ] \addplot coordinates {(0,2) (0.1,1) (0.3,0.5) (0.35,4) (0.5,3) (0.6,2) (0.7,1.5) (1,1.5)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ x tick label style={ /pgf/number format/1000 sep=}, ylabel=Population, enlargelimits=0.05, legend style={at={(0.5,-0.15)}, anchor=north,legend columns=-1}, ybar interval=0.7, ] \addplot coordinates {(1930,50e6) (1940,33e6) (1950,40e6) (1960,50e6) (1970,70e6)}; \addplot coordinates {(1930,38e6) (1940,42e6) (1950,43e6) (1960,45e6) (1970,65e6)}; \addplot coordinates {(1930,15e6) (1940,12e6) (1950,13e6) (1960,25e6) (1970,35e6)}; \legend{Far,Near,Here} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ xmin=0,xmax=53, ylabel=Age, xlabel=Quantity, enlargelimits=false, ytick=data, yticklabel interval boundaries, xbar interval, ] \addplot coordinates {(10,5) (10.5,10) (15,13) (24,18) (50,21) (23,25) (10,30) (3,50) (3,70)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ ybar interval, xticklabel= \pgfmathprintnumber\tick--\pgfmathprintnumber\nexttick ] \addplot+[hist={bins=3}] table[row sep=\\,y index=0] { data\\ 1\\ 2\\ 1\\ 5\\ 4\\ 10\\ 7\\ 10\\ 9\\ 8\\ 9\\ 9\\ }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ ybar interval, xtick=,% reset from ybar interval xticklabel= {$[\pgfmathprintnumber\tick,% \pgfmathprintnumber\nexttick)$} ] % a data file containing 8000 normally distributed % random numbers of mean 0 and variance 1 \addplot+[hist={data=x}] file {plotdata/pgfplots.randn.dat}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ tiny, height=4cm,width=12cm, ybar interval, ymin=0, xmin=0,xmax=1, axis on top, extra x ticks={0,1}, extra x tick style={ grid=none, x tick label as interval=false, xticklabel=$\pgfmathprintnumber\tick$ }, xticklabel={$[\pgfmathprintnumber[fixed]\tick,\cdot)$} ] \addplot+[samples=200,hist] {rnd}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ ybar interval, xtick=,% reset from ybar interval xticklabel= {$[\pgfmathprintnumber\tick, \pgfmathprintnumber\nexttick)$} ] % a data file containing 8000 normally distributed % random numbers of mean 0 and variance 1 \addplot+[hist={ data=x, cumulative}] file {plotdata/pgfplots.randn.dat}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ ybar interval, hist/symbolic coords={A,B,C,D,E,F,G,H,I,J}, xticklabel={[\tick--\nexttick[}, ] \addplot+[hist={bins=3}] table[row sep=\\,y index=0] { data\\ A\\ B\\ A\\ D\\ F\\ J\\ G\\ J\\ I\\ H\\ I\\ I\\ }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot+[xcomb] coordinates {(4,0) (1,1) (2,2) (5,3) (6,4) (1,5)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot+[ycomb] plot coordinates {(0,3) (1,2) (2,4) (3,1) (4,2)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot[blue, quiver={u=1,v=2*x}, -stealth,samples=15] {x^2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ title={$x \exp(-x^2-y^2)$ and its gradient}, domain=-2:2, view={0}{90}, axis background/.style={fill=white}, ] \addplot3[contour gnuplot={number=9, labels=false},thick] {exp(0-x^2-y^2)*x}; \addplot3[blue, quiver={ u={exp(0-x^2-y^2)*(1-2*x^2)}, v={exp(0-x^2-y^2)*(-2*x*y)}, scale arrows=0.3, }, -stealth,samples=15] {exp(0-x^2-y^2)*x}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ domain=0:1, xmax=1, ymax=1, ] \addplot3[surf] {x*y}; \addplot3[blue,/pgfplots/quiver, quiver/u=y, quiver/v=x, quiver/w=0, quiver/scale arrows=0.1, -stealth,samples=10] {1}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[axis equal, axis lines=middle, axis line style={->}, tick style={color=black}, xtick=\empty, ytick=\empty ] \addplot[samples=20, domain=0:2*pi, % the default choice 'variable=\x' leads to % unexpected results here! variable=\t, quiver={ u={-sin(deg(t))}, v={cos(deg(t))}, scale arrows=0.5}, ->,blue] ({cos(deg(t))}, {sin(deg(t))}); \addplot[samples=100, domain=0:2*pi] ({cos(deg(x))}, {sin(deg(x))}); \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[title=Quiver and plot table] \addplot[blue, quiver={u=\thisrow{u},v=\thisrow{v}}, -stealth] table { x y u v 0 0 1 0 1 1 1 1 2 4 1 4 3 9 1 6 4 16 1 8 }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[stack plots=y] \addplot coordinates {(0,1) (1,1) (2,2) (3,2)}; \addplot coordinates {(0,1) (1,1) (2,2) (3,2)}; \addplot coordinates {(0,1) (1,1) (2,2) (3,2)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[stack plots=y,/tikz/ybar] \addplot coordinates {(0,1) (1,1) (2,3) (3,2) (4,1.5)}; \addplot coordinates {(0,1) (1,1) (2,3) (3,2) (4,1.5)}; \addplot coordinates {(0,1) (1,1) (2,3) (3,2) (4,1.5)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ybar stacked] \addplot coordinates {(0,1) (1,1) (2,3) (3,2) (4,1.5)}; \addplot coordinates {(0,1) (1,1) (2,3) (3,2) (4,1.5)}; \addplot coordinates {(0,1) (1,1) (2,3) (3,2) (4,1.5)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ ybar stacked, enlargelimits=0.15, legend style={at={(0.5,-0.20)}, anchor=north,legend columns=-1}, ylabel={\#participants}, symbolic x coords={tool1, tool2, tool3, tool4, tool5, tool6, tool7}, xtick=data, x tick label style={rotate=45,anchor=east}, ] \addplot+[ybar] plot coordinates {(tool1,0) (tool2,2) (tool3,2) (tool4,3) (tool5,0) (tool6,2) (tool7,0)}; \addplot+[ybar] plot coordinates {(tool1,0) (tool2,0) (tool3,0) (tool4,3) (tool5,1) (tool6,1) (tool7,0)}; \addplot+[ybar] plot coordinates {(tool1,6) (tool2,6) (tool3,8) (tool4,2) (tool5,6) (tool6,5) (tool7,6)}; \addplot+[ybar] plot coordinates {(tool1,4) (tool2,2) (tool3,0) (tool4,2) (tool5,3) (tool6,2) (tool7,4)}; \legend{never, rarely, sometimes, often} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[stack plots=x,/tikz/xbar] \addplot coordinates {(1,0) (2,1) (2,2) (3,3)}; \addplot coordinates {(1,0) (2,1) (2,2) (3,3)}; \addplot coordinates {(1,0) (2,1) (2,2) (3,3)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[xbar stacked] \addplot coordinates {(1,0) (2,1) (2,2) (3,3)}; \addplot coordinates {(1,0) (2,1) (2,2) (3,3)}; \addplot coordinates {(1,0) (2,1) (2,2) (3,3)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ stack plots=y, area style, enlarge x limits=false] \addplot coordinates {(0,1) (1,1) (2,2) (3,2)} \closedcycle; \addplot coordinates {(0,1) (1,1) (2,2) (3,2)} \closedcycle; \addplot coordinates {(0,1) (1,1) (2,2) (3,2)} \closedcycle; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ const plot, stack plots=y, area style, enlarge x limits=false] \addplot coordinates {(0,1) (1,1) (2,2) (3,2)} \closedcycle; \addplot coordinates {(0,1) (1,1) (2,2) (3,2)} \closedcycle; \addplot coordinates {(0,1) (1,1) (2,2) (3,2)} \closedcycle; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ smooth, stack plots=y, area style, enlarge x limits=false] \addplot coordinates {(0,1) (1,1) (2,2) (3,2)} \closedcycle; \addplot coordinates {(0,1) (1,1) (2,2) (3,2)} \closedcycle; \addplot coordinates {(0,1) (1,1) (2,2) (3,2)} \closedcycle; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\pgfplotstableread{pgfplots.timeseries.dat}\loadedtable \pgfplotstabletypeset\loadedtable

[.tex] [.pdf]
\pgfplotstableread {pgfplots.timeseries.dat} {\loadedtable} \begin{tikzpicture} \begin{axis}[ ymin=0, minor tick num=4, enlarge x limits=false, axis on top, every axis plot post/.append style= {mark=none}, const plot, legend style={ area legend, at={(0.5,-0.15)}, anchor=north, legend columns=-1}] \addplot[draw=blue,fill=blue!30!white] table[x=time,y=1minload] from \loadedtable \closedcycle; \addplot table[x=time,y=nodes] from \loadedtable; \addplot table[x=time,y=cpus] from \loadedtable; \addplot table[x=time,y=processes] from \loadedtable; \legend{1min load,nodes,cpus,processes} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\pgfplotstableread{pgfplots.timeseries.dat}\loadedtable \begin{tikzpicture} \begin{axis}[ ymin=0, minor tick num=4, enlarge x limits=false, const plot, axis on top, stack plots=y, cycle list={% {blue!70!black,fill=blue},% {blue!60!white,fill=blue!30!white},% {draw=none,fill={rgb:red,138;green,82;blue,232}},% {red,thick}% }, ylabel={Mem [GB]}, legend style={ area legend, at={(0.5,-0.15)}, anchor=north, legend columns=2}] \addplot table[x=time,y=memused] from \loadedtable \closedcycle; \addplot table[x=time,y=memcached] from \loadedtable \closedcycle; \addplot table[x=time,y=membuf] from \loadedtable \closedcycle; \addplot+[stack plots=false] table[x=time,y=memtotal] from \loadedtable; \legend{Memory used,Memory cached,Memory buffered,Total memory} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[enlargelimits=false] \addplot+[only marks,samples=400] {rand}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot+[scatter,only marks, samples=50,scatter src=y] {x-x^2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot+[scatter, samples=50,scatter src=y] {x^3}; \end{axis} \end{tikzpicture}
\begin{tikzpicture} \begin{axis} % provide color data explicitly using [] % behind coordinates: \addplot+[scatter,scatter src=explicit] coordinates { (0,0) [1.0e10] (1,2) [1.1e10] (2,3) [1.2e10] (3,4) [1.3e10] % ... }; % Assumes a datafile.dat like % xcolname ycolname colordata % 0 0 0.001 % 1 2 0.3 % 2 2.1 0.4 % 3 3 0.5 % ... % the file may have more columns. \addplot+[scatter,scatter src=explicit] table[x=xcolname,y=ycolname,meta=colordata] {datafile.dat}; % Same data as last example: \addplot+[scatter,scatter src=\thisrow{colordata}+\thisrow{ycolname}] table[x=xcolname,y=ycolname] {datafile.dat}; % Assumes a datafile.dat like % 0 0 0.001 % 1 2 0.3 % 2 2.1 0.4 % 3 3 0.5 % ... % the first three columns will be used here: \addplot+[scatter,scatter src=explicit] file {datafile.dat}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[title=Default arguments] \addplot+[scatter,scatter src=y] {2*x+3}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ title=Black fill color and varying draw color, scatter/use mapped color= {draw=mapped color,fill=black}] \addplot+[scatter,scatter src=y] {2*x+3}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ title=Black draw color and varying fill color, scatter/use mapped color= {draw=black,fill=mapped color}] \addplot+[scatter,scatter src=y] {2*x+3}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[scatter/classes={ a={mark=square*,blue},% b={mark=triangle*,red},% c={mark=o,draw=black}}] % \addplot[] is better than \addplot+[] here: % it avoids scalings of the cycle list \addplot[scatter,only marks, scatter src=explicit symbolic] coordinates { (0.1,0.15) [a] (0.45,0.27) [c] (0.02,0.17) [a] (0.06,0.1) [a] (0.9,0.5) [b] (0.5,0.3) [c] (0.85,0.52) [b] (0.12,0.05) [a] (0.73,0.45) [b] (0.53,0.25) [c] (0.76,0.5) [b] (0.55,0.32) [c] }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[legend pos=south east] % The data file contains: % x y label % 0.1 0.15 a % 0.45 0.27 c % 0.02 0.17 a % 0.06 0.1 a % 0.9 0.5 b % 0.5 0.3 c % 0.85 0.52 b % 0.12 0.05 a % 0.73 0.45 b % 0.53 0.25 c % 0.76 0.5 b % 0.55 0.32 c \addplot[ % clickable coords={\thisrow{label}}, scatter/classes={ a={mark=square*,blue},% b={mark=triangle*,red},% c={mark=o,draw=black,fill=black}% }, scatter,only marks, scatter src=explicit symbolic] table[x=x,y=y,meta=label] {plotdata/scattercl.dat}; \addplot coordinates {(0.1,0.1) (0.5,0.3) (0.85,0.5)}; \legend{Class 1,Class 2,Class 3,Line} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[nodes near coords] \addplot+[only marks] coordinates { (0.5,0.2) (0.2,0.1) (0.7,0.6) (0.35,0.4) (0.65,0.1)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[nodes near coords,enlargelimits=0.2] \addplot+[only marks, point meta=explicit symbolic] coordinates { (0.5,0.2) [(1)] (0.2,0.1) [(2)] (0.7,0.6) [(3)] (0.35,0.4) [(4)] (0.65,0.1) [(5)] }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[enlargelimits=0.2] \addplot[ scatter,mark=*,only marks, % we use 'point meta' as color data... point meta=\thisrow{color}, % ... therefore, we can't use it as argument for nodes near coords ... nodes near coords*={$(\pgfmathprintnumber[frac]\myvalue)$}, % ... which requires to define a visualization dependency: visualization depends on={\thisrow{myvalue} \as \myvalue}, ] table { x y color myvalue 0.5 0.2 1 0.25 0.2 0.1 2 1.5 0.7 0.6 3 0.75 0.35 0.4 4 0.125 0.65 0.1 5 2 }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} % Low-Level scatter plot interface Example: % use three different marker classes % 0% - 30% : first class % 30% - 60% : second class % 60% - 100% : third class \begin{axis}[ scatter/@pre marker code/.code={% \ifdim\pgfplotspointmetatransformed pt<300pt \def\markopts{mark=square*,fill=blue}% \else \ifdim\pgfplotspointmetatransformed pt<600pt \def\markopts{mark=triangle*,fill=orange}% \else \def\markopts{mark=pentagon*,fill=red}% \fi \fi \expandafter\scope\expandafter[\markopts] },% scatter/@post marker code/.code={% \endscope }] \addplot+[scatter,scatter src=y, samples=40] {sin(deg(x))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot[mesh] {x+sin(deg(x))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot[mesh,point meta=explicit] coordinates { (0,0) [0] (1,0.1) [1] (2,0.1) [2] (3,0.3) [3] (4,0.3) [4] }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ title=Discarding unbounded coords, unbounded coords=discard] \addplot coordinates { (0,0) (10,50) (20,100) (30,200) (40,inf) (50,600) (60,800) (80,1000) }; \end{axis} \end{tikzpicture} \begin{tikzpicture} \begin{axis}[ title=Jumps at unbounded coords, unbounded coords=jump] \addplot coordinates { (0,0) (10,50) (20,100) (30,200) (40,inf) (50,600) (60,800) (80,1000) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ unbounded coords=jump, % A technical filter to cut out % the x<0 and y<0 edge. filter point/.code={% \pgfmathparse {\pgfkeysvalueof{/data point/x}<0}% \ifpgfmathfloatcomparison \pgfmathparse {\pgfkeysvalueof{/data point/y}<0}% \ifpgfmathfloatcomparison \pgfkeyssetvalue{/data point/x}{nan}% \fi \fi }, ] \addplot3[surf] {exp(-sqrt(x^2 + y^2))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[view={0}{0}, xlabel=$x$, zlabel=$z$, title=View along the positive $y$ axis] \addplot3[surf] {x}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[view={0}{90}, xlabel=$x$, ylabel=$y$, title=View from top] \addplot3[surf] {x}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[view={-45}{45}, xlabel=$x$,ylabel=$y$,zlabel=$z$] \addplot3[surf] {x}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[view/h=-30] \addplot3[ surf, %shader=interp, shader=flat, samples=50, domain=-3:3,y domain=-2:2] {sin(deg(x+y^2))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[view/h=10] \addplot3[ surf, %shader=interp, shader=flat, samples=50, domain=-3:3,y domain=-2:2] {sin(deg(x+y^2))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[view/h=40,colormap/violet] \addplot3[ surf, %shader=interp, shader=flat, samples=50, domain=-3:3,y domain=-2:2] {sin(deg(x+y^2))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[view/h=70] \addplot3[ surf, %shader=interp, shader=flat, samples=50, domain=-3:3,y domain=-2:2] {sin(deg(x+y^2))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ view/h=60, plot box ratio=1 1 1, colormap={violet}{[1cm] rgb255(0cm)=(25,25,122) color(1cm)=(white) rgb255(5cm)=(238,140,238)}, xlabel=$x$, ylabel=$t$, zlabel={$p(x,t)$}, shader=faceted, title=Initial \texttt{plot box ratio}, ] \addplot3[surf,y domain=0.02:3.5,samples=81] {1/(2*sqrt(pi*y)) * exp(0-x^2/y)}; % the '0' is a work-around for a bug in PGF 2.00 \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ view/h=60, plot box ratio=1 2 1, colormap={violet}{[1cm] rgb255(0cm)=(25,25,122) color(1cm)=(white) rgb255(5cm)=(238,140,238)}, xlabel=$x$, ylabel=$t$, zlabel={$p(x,t)$}, shader=flat, title=\texttt{plot box ratio=1 2 1}, ] \addplot3[surf,y domain=0.02:3.5,samples=81] {1/(2*sqrt(pi*y)) * exp(0-x^2/y)}; % the '0' is a work-around for a bug in PGF 2.00 \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ 3d box=background, % pretty printing, but irrelevant: title={3d box=background}, samples=5, domain=-4:4, xtick=data, ytick=data, ] \addplot3[surf] {x*y}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ 3d box,% same as 3d box=complete % pretty printing, but irrelevant: title={3d box=complete}, samples=5, domain=-4:4, xtick=data, ytick=data, ] \addplot3[surf] {x*y}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ 3d box=complete, grid=major, title={3d box=complete}, samples=5, domain=-4:4, xtick=data, ytick=data, ] \addplot3[surf] {x*y}; \end{axis} \end{tikzpicture}% ~ \begin{tikzpicture} \begin{axis}[ 3d box=complete*, grid=major, title={3d box=complete*}, samples=5, domain=-4:4, xtick=data, ytick=data, ] \addplot3[surf] {x*y}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ axis lines=center, axis on top, samples=5, domain=-4:4, xtick=data, ytick=data, ztick=\empty, % no z ticks here ] \addplot3[surf] {x*y}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ axis lines*=left, samples=5, domain=-4:4, xtick=data, ytick=data, ] \addplot3[surf] {x*y}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ axis lines*=right, samples=5, domain=-4:4, xtick=data, ytick=data, ] \addplot3[surf] {x*y}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} % this yields a 3x4 matrix: \addplot3[surf] coordinates { (0,0,0) (1,0,0) (2,0,0) (3,0,0) (0,1,0) (1,1,0.6) (2,1,0.7) (3,1,0.5) (0,2,0) (1,2,0.7) (2,2,0.8) (3,2,0.5) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} % We have `plotdata/first3d.dat' with %--------- % 0 0 0.8 % 1 0 0.56 % 2 0 0.5 % 3 0 0.75 % % 0 1 0.6 % 1 1 0.3 % 2 1 0.21 % 3 1 0.3 % % 0 2 0.68 % 1 2 0.22 % 2 2 0.25 % 3 2 0.4 % % 0 3 0.7 % 1 3 0.5 % 2 3 0.58 % 3 3 0.9 % -> yields a 4x4 matrix: \addplot3[surf] file {plotdata/first3d.dat}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} % this yields also a 3x4 matrix: \addplot3[surf,mesh/rows=3] coordinates { (0,0,0) (1,0,0) (2,0,0) (3,0,0) (0,1,0) (1,1,0.6) (2,1,0.7) (3,1,0.5) (0,2,0) (1,2,0.7) (2,2,0.8) (3,2,0.5) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[mesh/ordering=x varies] % this yields a 3x4 matrix in `x varies' % ordering: \addplot3[surf] coordinates { (0,0,0) (1,0,0) (2,0,0) (3,0,0) (0,1,0) (1,1,0.6) (2,1,0.7) (3,1,0.5) (0,2,0) (1,2,0.7) (2,2,0.8) (3,2,0.5) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[mesh/ordering=y varies] % this yields a 3x4 matrix in colwise ordering: \addplot3[surf] coordinates { (0,0,0) (0,1,0) (0,2,0) (1,0,0) (1,1,0.6) (1,2,0.7) (2,0,0) (2,1,0.7) (2,2,0.8) (3,0,0) (3,1,0.5) (3,2,0.5) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot3[surf] {y}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[colorbar] \addplot3 [surf,faceted color=blue, samples=15, domain=0:1,y domain=-1:1] {x^2 - y^2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[xlabel=$x$,ylabel=$y$] \addplot3 coordinates {(0,0,0) (0,0.5,1) (0,1,0)}; \addplot3 coordinates {(0,1,0) (0.5,1,1) (1,1,0)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[view={60}{30}] \addplot3+[domain=0:5*pi,samples=60,samples y=0] ({sin(deg(x))}, {cos(deg(x))}, {2*x/(5*pi)}); \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ xlabel=$x$, ylabel=$y$, zlabel={$f(x,y) = x\cdot y$}, title=A Scatter Plot Example] % `pgfplotsexample4_grid.dat' contains a % large sequence of input points of the form % x_0 x_1 f(x) % 0 0 0 % 0 0.03125 0 % 0 0.0625 0 % 0 0.09375 0 % 0 0.125 0 % 0 0.15625 0 \addplot3+[only marks] table {plotdata/pgfplotsexample4_grid.dat}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ xlabel=$x$, ylabel=$y$, zlabel={$f(x,y) = x\cdot y$}, title=A Scatter Plot Example] \addplot3+[only marks,scatter] table {plotdata/pgfplotsexample4_grid.dat}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ 3d box, zmax=1.4, colorbar, xlabel=$x$, ylabel=$y$, zlabel={$f(x,y) = x\cdot y$}, title={Using Coordinate Filters to fix $z=1.4$}] % `pgfplotsexample4.dat' contains similar data as in % `pgfplotsexample4_grid.dat', but it uses a uniform % matrix structure (same number of points in every scanline). % See examples above for extracts. \addplot3[surf,mesh/ordering=y varies] table {plotdata/pgfplotsexample4.dat}; \addplot3[scatter,scatter src=\thisrow{f(x)},only marks, z filter/.code={\def\pgfmathresult{1.4}}] table {plotdata/pgfplotsexample4_grid.dat}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ view={120}{40}, width=220pt, height=220pt, grid=major, z buffer=sort, xmin=-1,xmax=9, ymin=-1,ymax=9, zmin=-1,zmax=9, enlargelimits=upper, xtick={-1,1,...,19}, ytick={-1,1,...,19}, ztick={-1,1,...,19}, xlabel={$l_1$}, ylabel={$l_2$}, zlabel={$l_3$}, point meta={x+y+z+3}, colormap={summap}{ color=(black); color=(blue); color=(black); color=(white) color=(orange) color=(violet) color=(red) }, scatter/use mapped color={ draw=mapped color,fill=mapped color!70}, ] % `pgfplots_scatter4.dat' contains a large sequence of % the form % l_0 l_1 l_2 % 1 6 -1 % -1 -1 -1 % 0 -1 -1 % -1 0 -1 % -1 -1 0 % 1 -1 -1 % 0 0 -1 % 0 -1 0 \addplot3[only marks,scatter,mark=cube*,mark size=7] table {plotdata/pgfplots_scatterdata4.dat}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot3[mesh] {x^2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot3+[mesh,scatter,samples=10,domain=0:1] {x*(1-x)*y*(1-y)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[grid=major,view={210}{30}] \addplot3+[mesh,scatter,samples=10,domain=0:1] {5*x*sin(2*deg(x)) * y*(1-y)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[title=With background] \addplot3[mesh,domain=-2:2] {exp(-x^2-y^2)}; \end{axis} \end{tikzpicture} \begin{tikzpicture} \begin{axis}[title=Without background] \addplot3[surf,fill=white,domain=-2:2] {exp(-x^2-y^2)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[view/az=14] \addplot3[mesh,draw=red,samples=10] {x^2-y^2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot3[surf,shader=interp] {x*y}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ grid=major, colormap/greenyellow] \addplot3[surf,samples=30,domain=0:1] {5*x*sin(2*deg(x)) * y}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot3[surf,faceted color=blue] {x+y}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[colormap/cool] \addplot3[surf,samples=10,domain=0:1, shader=interp] {x*(1-x)*y*(1-y)}; \end{axis} \end{tikzpicture} \begin{tikzpicture} \begin{axis}[colormap/cool] \addplot3[surf,samples=25,domain=0:1, shader=flat] {x*(1-x)*y*(1-y)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[grid=major] \addplot3[surf,shader=interp, samples=25,domain=0:2,y domain=0:1] {exp(-x) * sin(pi*deg(y))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[grid=major] \addplot3[surf,shader=faceted, samples=25,domain=0:2,y domain=0:1] {exp(-x) * sin(pi*deg(y))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot3[surf,shader=flat, samples=10,domain=0:1] {x^2*y}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot3[surf,shader=interp, samples=10,domain=0:1] {x^2*y}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot3[surf,shader=faceted, samples=10,domain=0:1] {x^2*y}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot3[surf,shader=faceted interp, samples=10,domain=0:1] {x^2*y}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot3[surf,shader=flat, draw=black, samples=10,domain=0:1] {x^2*y}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot3[surf,shader=faceted, scatter,mark=*, samples=10,domain=0:1] {x^2*y}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ axis lines=center, axis on top, xlabel={$x$}, ylabel={$y$}, zlabel={$z$}, domain=0:1, y domain=0:2*pi, xmin=-1.5, xmax=1.5, ymin=-1.5, ymax=1.5, zmin=0.0, mesh/interior colormap= {blueblack}{color=(black) color=(blue)}, colormap/blackwhite, samples=10, samples y=40, z buffer=sort, ] \addplot3[surf] ({x*cos(deg(y))},{x*sin(deg(y))},{x}); \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ hide axis, xlabel=$x$,ylabel=$y$, mesh/interior colormap name=hot, colormap/blackwhite, ] \addplot3[domain=-1.5:1.5,surf] {-exp(-x^2-y^2)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ title=Example needing fine-tuning, xlabel=$x$, ylabel=$y$] \addplot3[surf, mesh/interior colormap= {blueblack}{color=(black) color=(blue)}, colormap/blackwhite, domain=0:1] {sin(deg(8*pi*x))* exp(-20*(y-0.5)^2) + exp(-(x-0.5)^2*30 - (y-0.25)^2 - (x-0.5)*(y-0.25))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ title=Example of before with fine-tuning, xlabel=$x$, ylabel=$y$] \addplot3[surf, mesh/interior colormap= {blueblack}{color=(black) color=(blue)}, % slightly increase sampling quality (was 25): samples=31, % avoids overshooting corners: miter limit=1, % move boundary between inner and outer: mesh/interior colormap thresh=0.1, colormap/blackwhite, domain=0:1] {sin(deg(8*pi*x))* exp(-20*(y-0.5)^2) + exp(-(x-0.5)^2*30 - (y-0.25)^2 - (x-0.5)*(y-0.25))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[view={0}{90}] \addplot3[contour gnuplot] {x*y}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot3[contour gnuplot] {exp(0-x^2-y^2)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ title={$x \exp(-x^2-y^2)$}, domain=-2:2,enlarge x limits, view={0}{90}, ] \addplot3[contour gnuplot={number=14},thick] {exp(0-x^2-y^2)*x}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ title={$x \exp(-x^2-y^2)$}, domain=-2:2, enlargelimits, view={0}{90}, ] \addplot3[ contour gnuplot={levels={-0.1,-0.2,-0.6}}, thick] {exp(0-x^2-y^2)*x}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot[contour prepared] table { 2 2 0.8 0.857143 2 0.6 1 1 0.6 2 0.857143 0.6 2.5 1 0.6 2.66667 2 0.6 0.571429 2 0.4 0.666667 1 0.4 1 0.666667 0.4 2 0.571429 0.4 3 0.8 0.4 0.285714 2 0.2 0.333333 1 0.2 1 0.333333 0.2 2 0.285714 0.2 3 0.4 0.2 }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot[contour prepared, contour prepared format=matlab] table { % (0.2,5) ==> contour `0.2' (x), 5 points follow (y): 2.0000000e-01 5.0000000e+00 3.0000000e+00 4.0000000e-01 2.0000000e+00 2.8571429e-01 1.0000000e+00 3.3333333e-01 3.3333333e-01 1.0000000e+00 2.8571429e-01 2.0000000e+00 % (0.4,5) ==> contour `0.4', consists of 5 points 4.0000000e-01 5.0000000e+00 3.0000000e+00 8.0000000e-01 2.0000000e+00 5.7142857e-01 1.0000000e+00 6.6666667e-01 6.6666667e-01 1.0000000e+00 5.7142857e-01 2.0000000e+00 % (0.6,6) ==> contour `0.6', has 6 points 6.0000000e-01 6.0000000e+00 2.6666667e+00 2.0000000e+00 2.5000000e+00 1.0000000e+00 2.0000000e+00 8.5714286e-01 1.0000000e+00 1.0000000e+00 1.0000000e+00 1.0000000e+00 8.5714286e-01 2.0000000e+00 }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ title=Separating $z$ from Color Value, xlabel=$x$, ylabel=$y$, ] \addplot3[contour prepared, point meta=\thisrow{level}] table { x y z level 0.857143 2 0.4 0.6 1 1 0.6 0.6 2 0.857143 0.6 0.6 2.5 1 0.6 0.6 2.66667 2 0.4 0.6 0.571429 2 0.2 0.4 0.666667 1 0.4 0.4 1 0.666667 0.4 0.4 2 0.571429 0.4 0.4 3 0.8 0.2 0.4 0.285714 2 0 0.2 0.333333 1 0.2 0.2 1 0.333333 0.2 0.2 2 0.285714 0.2 0.2 3 0.4 0 0.2 }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ title={$x \exp(-x^2-y^2)$}, domain=-2:2,enlarge x limits, view={0}{90}, ] \addplot3[ contour gnuplot={ scanline marks=required, number=14, contour label style={ /pgf/number format/fixed, /pgf/number format/precision=1, }, },thick ] {exp(0-x^2-y^2)*x}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[view={0}{90}] \addplot3[contour gnuplot={ labels over line,number=9}] {x*y}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[view={60}{30}] \addplot3+[domain=0:5*pi,samples=60,samples y=0] ({sin(deg(x))}, {cos(deg(x))}, {2*x/(5*pi)}); \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[view={60}{30}] \addplot3[mesh,z buffer=sort, samples=20,domain=-1:0,y domain=0:2*pi] ({sqrt(1-x^2) * cos(deg(y))}, {sqrt( 1-x^2 ) * sin(deg(y))}, x); \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[view={60}{30}] \addplot3[mesh,z buffer=sort, scatter,only marks,scatter src=z, samples=30,domain=-1:1,y domain=0:2*pi] ({sqrt(1-x^2) * cos(deg(y))}, {sqrt( 1-x^2 ) * sin(deg(y))}, x); \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[view={60}{30}] \addplot3[surf,shader=interp,z buffer=sort, samples=30,domain=-1:0,y domain=0:2*pi] ({sqrt(1-x^2) * cos(deg(y))}, {sqrt( 1-x^2 ) * sin(deg(y))}, x); \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot[patch] table { x y 0 0 1 1 2 0 % empty lines do not hurt, they are ignored here: 1 1 2 0 3 1 2 0 3 1 4 0 }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot[patch] table[point meta=\thisrow{c}] { x y c 0 0 0.2 1 1 0 2 0 1 1 1 0 2 0 1 3 1 0 2 0 1 3 1 0 4 0 0.5 }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot[patch,shader=interp] table[point meta=\thisrow{c}] { x y c 0 0 0.2 1 1 0 2 0 1 1 1 0 2 0 1 3 1 0 2 0 1 3 1 0 4 0 0.5 }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot[patch,shader=interp] table[point meta=\thisrow{c}] { x y c 0 0 0.2 1 1 0 2 0 1 1 1 0 2 0 -1 3 1 0 2 0 0.5 3 1 1 4 0 0.5 }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot[patch,table/row sep=\\,patch table={% 0 1 2\\ 1 2 3\\ 4 3 5\\ }] table[row sep=\\,point meta=\thisrow{c}] { x y c \\ 0 0 0.2\\% 0 1 1 0 \\% 1 2 0 1 \\% 2 3 1 0 \\% 3 2 0 0.5\\% 4 4 0 0.5\\% 5 }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} % this uses per-patch color data: \addplot[patch,table/row sep=\\, patch table with point meta={% 0 1 2 100\\ 1 2 3 10\\ 4 3 5 0\\ }] table[row sep=\\] { x y \\ 0 0 \\% 0 1 1 \\% 1 2 0 \\% 2 3 1 \\% 3 2 0 \\% 4 4 0 \\% 5 }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} % this uses n per-patch color values: \addplot[patch,shader=interp, table/row sep=\\, patch table with individual point meta={% 0 1 2 100 100 100\\% V_0 V_1 V_2 C_0 C_1 C_2 1 2 3 10 0 50\\ 4 3 5 0 0 100\\ }] table[row sep=\\] { x y \\ 0 0 \\% 0 1 1 \\% 1 2 0 \\% 2 3 1 \\% 3 2 0 \\% 4 4 0 \\% 5 }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[axis equal] % FokkerDrI_layer_0.patches.dat contains: % # each row is one vertex; three consecutive % # vertices make one triangle (patch) % 105.577 -19.7332 2.85249 % 88.9233 -21.1254 13.0359 % 89.2104 -22.1547 1.46467 % # end of facet 0 % 105.577 -19.7332 2.85249 % 105.577 -17.2161 12.146 % 88.9233 -21.1254 13.0359 % # end of facet 1 \addplot3[patch] file {plotdata/FokkerDrI_layer_0.patches.dat}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} % FokkerDrI_layer_0.facetIdx.dat contains: % # each row makes up one facet; it % # consists of 0-based indices into % # the vertex array % 0 1 2 % triangle of vertices #0,#1 and #2 % 0 3 1 % triangle of vertices #0,#3 and #1 % 3 4 1 % 5 6 7 % 6 8 7 % 8 9 7 % 8 10 9 % ... % while FokkerDrI_layer_0.vertices.dat contains % 105.577 -19.7332 2.85249 % vertex #0 % 88.9233 -21.1254 13.0359 % vertex #1 % 89.2104 -22.1547 1.46467 % vertex #2 % 105.577 -17.2161 12.146 % 105.577 -10.6054 18.7567 % 105.577 7.98161 18.7567 % 105.577 14.5923 12.146 % ... \addplot3[patch,shader=interp, patch table= {plotdata/FokkerDrI_layer_0.facetIdx.dat}] file {plotdata/FokkerDrI_layer_0.vertices.dat}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[view/h=70] % FokkerDrI_layer_0.patches.dat contains: % # each row is one vertex; three consecutive % # vertices make one triangle (patch) % 105.577 -19.7332 2.85249 % 88.9233 -21.1254 13.0359 % 89.2104 -22.1547 1.46467 % # end of facet 0 % 105.577 -19.7332 2.85249 % 105.577 -17.2161 12.146 % 88.9233 -21.1254 13.0359 % # end of facet 1 \addplot3[patch,mesh] file {plotdata/FokkerDrI_layer_0.patches.dat}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[nodes near coords={(\coordindex)}, title=Rectangle from matrix input] % note that surf implies 'patch type=rectangle' \addplot[surf,mesh/rows=2,patch type=rectangle] coordinates { (0,0) (1,0) (0,1) (1,1) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[nodes near coords={(\coordindex)}, title=Rectangle from patch input] \addplot[patch,patch type=rectangle] coordinates { (0,0) (1,0) (1,1) (0,1) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[nodes near coords={(\coordindex)}] \addplot[patch,patch type=triangle] coordinates { (0,0) (1,0) (0,1) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
Aligning at ....... \begin{tikzpicture}[baseline] \begin{axis}[small,anchor=aninnernode.center] \addplot {sin(deg(x))}; \node [pin=-90:(aninnernode),fill=black,circle,scale=0.3] (aninnernode) at (axis cs:-2,0.75) {}; \draw[help lines] (axis cs:-6,0.75) -- (axis cs:6,0.75); \end{axis} \end{tikzpicture}

[.tex] [.pdf]
Aligning at ....... \begin{tikzpicture}[baseline] \begin{axis}[ small, title={The function $\sin x$ is very pretty.}, title style={name=MyTitleNode}, anchor=MyTitleNode.base, ] \addplot {sin(deg(x))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
% 1. Unaligned: \pgfplotsset{domain=-1:1} \begin{tikzpicture} \begin{axis}[xlabel=A normal sized $x$ label] \addplot[smooth,blue,mark=*] {x^2}; \end{axis} \end{tikzpicture}% \hspace{0.15cm} \begin{tikzpicture} \begin{axis}[xlabel={$\displaystyle \sum_{i=0}^N n_i $ }] \addplot[smooth,blue,mark=*] {x^2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
% 2. Aligned: \pgfplotsset{domain=-1:1} \begin{tikzpicture}[baseline] \begin{axis}[xlabel=A normal sized $x$ label] \addplot[smooth,blue,mark=*] {x^2}; \end{axis} \end{tikzpicture}% \hspace{0.15cm} \begin{tikzpicture}[baseline] \begin{axis}[xlabel={$\displaystyle \sum_{i=0}^N n_i $ }] \addplot[smooth,blue,mark=*] {x^2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \pgfplotsset{every axis/.append style={ cycle list={ {red,only marks,mark options={ fill=red,scale=0.8},mark=*}, {black,only marks,mark options={ fill=black,scale=0.8},mark=square*}}}} \begin{axis}[width=4cm,scale only axis, name=main plot] \addplot file {plotdata/pgfplots_scatterdata1.dat}; \addplot file {plotdata/pgfplots_scatterdata2.dat}; \addplot[blue] coordinates { (0.093947, -0.011481) (0.101957, 0.494273) (0.109967, 1.000027)}; \end{axis} \begin{axis}[ at={(main plot.below south west)},yshift=-0.1cm, anchor=north west, width=4cm,scale only axis,height=0.8cm, ytick=\empty] \addplot file {plotdata/pgfplots_scatterdata1_latent.dat}; \addplot file {plotdata/pgfplots_scatterdata2_latent.dat}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\pgfplotsset{ small, title=Trimmed bounding boxes } \begin{center} \begin{tabular}{rl} \begin{tikzpicture}[baseline,trim axis left] \begin{axis} \addplot {x}; \end{axis} \end{tikzpicture} & \begin{tikzpicture}[baseline,trim axis right] \begin{axis}[ ylabel={$f(x)=x^2$}, yticklabel pos=right, ylabel style={font=\Huge}] \addplot {x^2}; \end{axis} \end{tikzpicture} \\ % \begin{tikzpicture}[baseline,trim axis left] \begin{axis}[xlabel=$x$,xlabel style={font=\Huge}] \addplot {x^3}; \end{axis} \end{tikzpicture}% & \begin{tikzpicture}[baseline,trim axis right] \begin{axis}[yticklabel pos=right] \addplot {x^4}; \end{axis} \end{tikzpicture}% \\ \end{tabular}% \end{center}

[.tex] [.pdf]
\begin{tikzpicture} \pgfplotsset{small} \matrix { \begin{axis} \addplot {x}; \end{axis} & % differently large labels are aligned automatically: \begin{axis}[ylabel={$f(x)=x^2$},ylabel style={font=\Huge}] \addplot {x^2}; \end{axis} \\ % \begin{axis}[xlabel=$x$,xlabel style={font=\Huge}] \addplot {x^3}; \end{axis} & \begin{axis} \addplot {x^4}; \end{axis} \\ }; \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture}% \begin{axis}[ title=A title, ylabel style={overlay}, yticklabel style={overlay}, xlabel={$x$}, ylabel={$y$}, legend style={at={(0.5,0.97)}, anchor=north,legend columns=-1}, domain=-2:2 ] \addplot {x^2}; \addplot {x^3}; \addplot {x^4}; \legend{$x^2$,$x^3$,$x^4$} \end{axis} \end{tikzpicture}%

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ domain=0:6.2832,samples=200, legend style={ overlay, at={(-0.5,0.5)}, anchor=center}, every axis plot post/.append style={mark=none}, enlargelimits=false] \addplot {sin(deg(x)+3)+rand*0.05}; \addplot {cos(deg(x)+2)+rand*0.05}; \legend{Signal 1,Signal 2} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\setlength{\fboxsep}{0pt}% \fbox{% \begin{tikzpicture}% \begin{axis}[ title=A title, xlabel={$x$}, ylabel={$y$}, legend style={at={(0.5,0.97)}, anchor=north,legend columns=-1}, domain=-2:2 ] \addplot {x^2}; \addplot {x^3}; \addplot {x^4}; \legend{$x^2$,$x^3$,$x^4$} \end{axis} \pgfresetboundingbox \path (current axis.south west) rectangle (current axis.north east); \end{tikzpicture}% }%

[.tex] [.pdf]
\setlength{\fboxsep}{0pt}% \fbox{% \begin{tikzpicture}% \begin{pgfinterruptboundingbox} \begin{axis}[ title=A title, xlabel={$x$}, ylabel={$y$}, legend style={at={(0.5,0.97)}, anchor=north,legend columns=-1}, domain=-2:2 ] \addplot {x^2}; \addplot {x^3}; \addplot {x^4}; \legend{$x^2$,$x^3$,$x^4$} \end{axis} \end{pgfinterruptboundingbox} \useasboundingbox (current axis.below south west) rectangle (current axis.above north east); \end{tikzpicture}% }%

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ymin=0,ymax=1,enlargelimits=false] \addplot [blue!80!black,fill=blue,fill opacity=0.5] coordinates {(0,0.1) (0.1,0.15) (0.2,0.5) (0.3,0.62) (0.4,0.56) (0.5,0.58) (0.6,0.65) (0.7,0.6) (0.8,0.58) (0.9,0.55) (1,0.52)} |- (axis cs:0,0) -- cycle; \addplot [red,fill=red!90!black,opacity=0.5] coordinates {(0,0.25) (0.1,0.27) (0.2,0.24) (0.3,0.24) (0.4,0.26) (0.5,0.3) (0.6,0.23) (0.7,0.2) (0.8,0.15) (0.9,0.1) (1,0.1)} |- (axis cs:0,0) -- cycle; \addplot[green!20!black] coordinates {(0,0.4) (0.2,0.75) (1,0.75)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot+[id=parable,domain=-5:5] gnuplot{4*x**2 - 5} node[pin=180:{$4x^2-5$}]{}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot3[surf,domain=0:360,samples=40] {sin(x)*sin(y)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[colormap/redyellow,colorbar] \addplot3[surf, domain=0:360,samples=40] {sin(x)*sin(y)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[view={60}{30}] \addplot3[surf,shader=flat, samples=20, domain=-1:0,y domain=0:2*pi, z buffer=sort] ({sqrt(1-x^2) * cos(deg(y))}, {sqrt( 1-x^2 ) * sin(deg(y))}, x); \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{loglogaxis} \addplot coordinates { (769, 1.6227e-04) (1793, 4.4425e-05) (4097, 1.2071e-05) (9217, 3.2610e-06) (2.2e5, 2.1E-6) (1e6, 0.00003341) (2.3e7, 0.00131415) }; \end{loglogaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot {sin(deg(x))}; \end{axis} \end{tikzpicture} \begin{tikzpicture} \begin{axis} \addplot+[only marks] {sin(deg(x))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot coordinates { (0,0) (0.5,1) (1,2) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot+[error bars/.cd,x dir=both,x explicit] coordinates { (0,0) +- (0.1,0) (0.5,1) +- (0.4,0.2) (1,2) (2,5) +- (1,0.1) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot+[scatter,scatter src=explicit] coordinates { (900,1e-6) [1] (2600,5e-7) [2] (4000,7e-8) [3] }; \end{axis} \end{tikzpicture}
\begin{tikzpicture} \begin{loglogaxis}[ xlabel=Dof, ylabel=$L_2$ error] \addplot table[x=dof,y=L2] {datafile.dat}; \end{loglogaxis} \end{tikzpicture}
\begin{tikzpicture} \begin{loglogaxis}[ xlabel=Dof, ylabel=$L_\infty$ error] \addplot table[x=dof,y=Lmax] {datafile.dat}; \end{loglogaxis} \end{tikzpicture}
\begin{tikzpicture} \begin{loglogaxis}[ xlabel=Dof, ylabel=$L_\infty$ error] \addplot table[x=dof,y=Lmax] { dof L2 Lmax maxlevel 5 8.31160034e-02 1.80007647e-01 2 17 2.54685628e-02 3.75580565e-02 3 49 7.40715288e-03 1.49212716e-02 4 129 2.10192154e-03 4.23330523e-03 5 321 5.87352989e-04 1.30668515e-03 6 769 1.62269942e-04 3.88658098e-04 7 1793 4.44248889e-05 1.12651668e-04 8 4097 1.20714122e-05 3.20339285e-05 9 9217 3.26101452e-06 8.97617707e-06 10 }; \end{loglogaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot {x^2 + 4}; \addplot {-5*x^3 - x^2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot+[domain=0:360] {sin(x)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot+[domain=-pi:pi] {sin(deg(x))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{loglogaxis}[ title={$\frac{1}{x^2}$}] \addplot[blue,domain=1:1e30] {x^-2}; \end{loglogaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{semilogyaxis}[ title={$e^x$ logarithmically plotted}] \addplot[blue,domain=1:700] {exp(x)}; \end{semilogyaxis} \end{tikzpicture}

[.tex] [.pdf]
\pgfplotstabletypeset[columns={maxlevel,L2}]{plotdata/newexperiment1.dat} \begin{tikzpicture} \begin{semilogyaxis}[ xlabel=\texttt{maxlevel}$ + 10$ ] \addplot table [x expr=\thisrow{maxlevel}+10, y=L2] {plotdata/newexperiment1.dat}; \end{semilogyaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot gnuplot[id=sin]{sin(x)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{semilogyaxis} \addplot gnuplot [id=exp,domain=0:10]{exp(x)}; \end{semilogyaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot shell[prefix=pgfshell_,id=cos]{awk 'BEGIN{ pi=3.14159; N=10; for(i=0;i<=N;i++) print i,cos(i/N*pi);}'}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot+[prefix=pgfshell_,id=replot] shell{cat pgfshell_cos.out}; % just reprint the result from above \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[enlargelimits=false,axis on top] \addplot graphics [xmin=-3,xmax=3,ymin=-3,ymax=3] {external1}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[axis on top,title=Graphics Import] \addplot graphics [xmin=0,xmax=1,ymin=0,ymax=1, % trim=left bottom right top includegraphics={trim=12 9 12 8,clip}] {external2}; \addplot coordinates {(0,0) (1,1)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[axis on top,title=Graphics Import] % provide options for the legend: \addplot[red,only marks,mark=*,mark size=1pt] graphics [xmin=0,xmax=1,ymin=0,ymax=1, % trim=left bottom right top includegraphics={trim=12 9 12 8,clip}] {external2}; \addplot coordinates {(0,0) (1,1)}; \legend{Scatter,Line} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[axis on top,title=Graphics Import] \addplot graphics % instead of the min/max things: [points={(0,1) (1,0)}, % trim=left bottom right top includegraphics={trim=12 9 12 8,clip}] {external2}; \addplot coordinates {(0,0) (1,1)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ grid=both,minor tick num=1, xlabel=$x$,ylabel=$y$, ] \addplot3 graphics[ points={% important (0,1,0) => (0,207-112) (1,0,0) => (446,207-133) (0.5546,0.5042,1.825) => (236,207) (0,0,0) => (194,207-202) }] {plotdata/plotgraphics3dsurf.png}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ xmax=1.5,% extra limits grid=both,minor tick num=1, xlabel=$x$,ylabel=$y$, ] \addplot3[surf] % 'surf' is only used for the legend. graphics[ points={ (0,1,0) => (0,207-112) (1,0,0) => (446,207-133) (0.5546,0.5042,1.825) => (236,207) (0,0,0) => (194,207-202) }] {plotdata/plotgraphics3dsurf.png}; \addlegendentry{Graphics} \addplot3+[only marks] coordinates { (0,1,0) (1,0,0) (0.5546,0.5042,1.825) (0,0,0) }; \addlegendentry{Scatter} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ grid=both,minor tick num=1, xlabel=$x$,ylabel=$y$, title={\centering Geometry provided by Sven Gro\ss, Bonn\\ \url{http://www.igpm.rwth-aachen.de/DROPS}\\}, title style={text width=6cm,font=\tiny}, ] \addplot3 graphics[ points={ (-0.002625,0.002625,0) => (140,234) (0,0.00263,0.00263) => (230,364) (0,-0.00263,-0.00263) => (366,81) (0,-0.00263,0.00263) => (366,276) (0.002625,0.002625,0.002625) } ] {plotdata/risingdrop3d.png}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ height=8cm,width=7cm,% improve scaling manually grid=both,minor tick num=1, xlabel=$x$,ylabel=$y$, title={\centering Geometry provided by Sven Gro\ss, Bonn\\ \url{http://www.igpm.rwth-aachen.de/DROPS}\\}, title style={text width=6cm,font=\tiny}, ] \addplot3 graphics[ points={ (-0.002625,0.002625,0) => (140,234) (0,0.00263,0.00263) => (230,364) (0,-0.00263,-0.00263) => (366,81) (0,-0.00263,0.00263) => (366,276) (0.002625,0.002625,0.002625) } ] {plotdata/risingdrop3d.png}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ grid=both,minor tick num=1, xlabel=$x$,ylabel=$y$, 3d box, ] \addplot3 graphics[ points={ (1,1,1) => (205,48) (10,1,10) => (503,324) (1,1,4.044)=> (206,102) (10,10,10) => (390,398) } ] {plotdata/plotgraphics3.png}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
% [See the TikZ manual if you'd like to learn about nodes and pins] \begin{tikzpicture} \tikzset{ every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny}, small dot/.style={fill=black,circle,scale=0.3} } \begin{axis}[ clip=false, title=How \texttt{axis description cs} works ] \addplot {x}; \node[small dot,pin=120:{$(0,0)$}] at (axis description cs:0,0) {}; \node[small dot,pin=-30:{$(1,1)$}] at (axis description cs:1,1) {}; \node[small dot,pin=-90:{$(1.03,0.5)$}] at (axis description cs:1.03,0.5) {}; \node[small dot,pin=125:{$(0.5,0.5)$}] at (axis description cs:0.5,0.5) {}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ legend entries={$x$,$x^2$}, legend style={ at={(1.03,0.5)}, anchor=west } ] \addplot {x}; \addplot {x^2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
% the same as above for 3D ... % [See the TikZ manual if you'd like to learn about nodes and pins] \begin{tikzpicture} \tikzset{ every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny}, small dot/.style={fill=black,circle,scale=0.3} } \begin{axis}[ clip=false, title=How \texttt{axis description cs} works in 3D ] \addplot3 coordinates {(-5,-5,-5) (5,5,5)}; \draw[black!15] (axis description cs:0,0) rectangle (axis description cs:1,1); \node[small dot,pin=120:{$(0,0)$}] at (axis description cs:0,0) {}; \node[small dot,pin=-30:{$(1,1)$}] at (axis description cs:1,1) {}; \node[small dot,pin=-90:{$(1.03,0.5)$}] at (axis description cs:1.03,0.5) {}; \node[small dot,pin=125:{$(0.5,0.5)$}] at (axis description cs:0.5,0.5) {}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\tikzset{ every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny}, small dot/.style={fill=black,circle,scale=0.3} } \begin{tikzpicture} \begin{axis}[ clip=false, ticklabel style={draw=red}, title=Positioning with \texttt{xticklabel cs}] \addplot {x}; \node[small dot,pin=-90:{\texttt{xticklabel cs:0}}] at (xticklabel cs:0) {}; \node[small dot,pin=-90:{\texttt{xticklabel cs:0.5}}] at (xticklabel cs:0.5) {}; \node[small dot,pin=-90:{\texttt{xticklabel cs:1}}] at (xticklabel cs:1) {}; \node[small dot,pin=180:{\texttt{yticklabel cs:0}}] at (yticklabel cs:0) {}; \node[small dot,pin=180:{\texttt{yticklabel cs:0.5}}] at (yticklabel cs:0.5) {}; \node[small dot,pin=180:{\texttt{yticklabel cs:1}}] at (yticklabel cs:1) {}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
% the same as above for 3D ... \begin{tikzpicture} \tikzset{ every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny}, small dot/.style={fill=black,circle,scale=0.3} } \begin{axis}[ ticklabel style={draw=red}, clip=false, title=Positioning with \texttt{ticklabel cs} in 3D ] \addplot3 coordinates {(-5,-5,-5) (5,5,5)}; \node[small dot,pin=-90:{\texttt{xticklabel cs:0}}] at (xticklabel cs:0) {}; \node[small dot,pin=-90:{\texttt{xticklabel cs:0.5}}] at (xticklabel cs:0.5) {}; \node[small dot,pin=-90:{\texttt{xticklabel cs:1}}] at (xticklabel cs:1) {}; \node[small dot,pin=-45:{\texttt{yticklabel cs:0}}] at (yticklabel cs:0) {}; \node[small dot,pin=-45:{\texttt{yticklabel cs:0.5}}] at (yticklabel cs:0.5) {}; \node[small dot,pin=-45:{\texttt{yticklabel cs:1}}] at (yticklabel cs:1) {}; \node[small dot,pin=180:{\texttt{zticklabel cs:0}}] at (zticklabel cs:0) {}; \node[small dot,pin=180:{\texttt{zticklabel cs:0.5}}] at (zticklabel cs:0.5) {}; \node[small dot,pin=180:{\texttt{zticklabel cs:1}}] at (zticklabel cs:1) {}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\tikzset{ every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny}, small dot/.style={fill=black,circle,scale=0.3} } \begin{tikzpicture} \begin{axis}[ xticklabel style={draw=red}, clip=false, title=\texttt{ticklabel cs} and its optional shift ] \addplot3 coordinates {(-5,-5,-5) (5,5,5)}; \draw[blue,thick,->] (xticklabel cs:0,0) -- (xticklabel cs:1,0); \draw[red,thick,->] (xticklabel cs:0,5pt) -- (xticklabel cs:1,5pt); \draw[magenta,thick,->] (xticklabel cs:0,10pt) -- (xticklabel cs:1,10pt); \draw[green,thick,->] (xticklabel cs:0,15pt) -- (xticklabel cs:1,15pt); \node[small dot,pin=0:{\texttt{xticklabel cs:1,0}}] at (xticklabel cs:1,0) {}; \node[small dot,pin=0:{\texttt{xticklabel cs:1,15pt}}] at (xticklabel cs:1,15pt) {}; \draw[blue,thick,->] (xticklabel cs:0,0) -- (xticklabel cs:0,15pt); \draw[blue,thick,->] (xticklabel cs:1,0) -- (xticklabel cs:1,15pt); \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ title=Without \texttt{near ticklabel}, ylabel={$f(x)=x$}, every axis y label/.style= {at={(ticklabel cs:0.5)},rotate=90,anchor=center}, clip=false,% to display the \path below ylabel style={draw=red}, yticklabel style={draw=red} ] \addplot {x}; % visualize the position: \fill (yticklabel cs:0.5) circle(2pt); \end{axis} \end{tikzpicture}% ~ \begin{tikzpicture} \begin{axis}[ title=With \texttt{near ticklabel}, ylabel={$f(x)=x$}, every axis y label/.style= {at={(ticklabel cs:0.5)},rotate=90,anchor=near ticklabel}, clip=false, ylabel style={draw=red}, yticklabel style={draw=red} ] \addplot {x}; \fill (yticklabel cs:0.5) circle(2pt); \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ xlabel=Variable 1, ylabel=Variable 2, zlabel=value, xlabel style={sloped like x axis}, ylabel style={sloped} ] \addplot3[surf] {y*x*(1-x)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{loglogaxis}[ xlabel=Dof,ylabel=Error, title={$\mu=0.1$, $\sigma=0.2$}] \addplot coordinates { (5, 8.312e-02) (17, 2.547e-02) (49, 7.407e-03) (129, 2.102e-03) (321, 5.874e-04) (769, 1.623e-04) (1793, 4.442e-05) (4097, 1.207e-05) (9217, 3.261e-06) }; \end{loglogaxis} \end{tikzpicture}%

[.tex] [.pdf]
\pgfplotsset{every axis/.append style={ extra description/.code={ \node at (0.5,0.5) {Center!}; }}} \begin{tikzpicture} \begin{axis} \addplot {x^2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot[smooth,mark=*,blue] coordinates { (0,2) (2,3) (3,1) }; \addlegendentry{Case 1} \addplot[smooth,color=red,mark=x] coordinates { (0,0) (1,1) (2,1) (3,2) }; \addlegendentry{Case 2} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \foreach \p in {1,2,3} { \addplot {x^\p}; \addlegendentryexpanded{$x^\p$} } \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[legend entries={$x$,$x^2$}] \addplot {x}; \addplot {x^2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[legend entries={$x$,$x^2$}] \addplot {x}; \addplot {x^2}; \legend{$a$,$b$}% overrides the option \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[legend entries={$x$,[red]$x^2$,$x^3$}] \addplot {x}; \addplot {x^2}; \addplot {x^3}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ % this modifies 'every axis legend': legend style={font=\large} ] \addplot coordinates {(0,0) (1,1)}; \addplot coordinates {(0,1) (1,2)}; \addplot coordinates {(0,2) (1,3)}; \legend{$l_1$,$l_2$,$l_3$} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ % align right: legend style={ cells={anchor=east}, legend pos=outer north east, } ] \addplot coordinates {(0,0) (1,1)}; \addplot coordinates {(0,1) (1,2)}; \addplot coordinates {(0,2) (1,3)}; \legend{$l_1$, legend $2$,$l_3$} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
% similar placement as previous example: \pgfplotsset{every axis legend/.append style={ at={(1.02,1)}, anchor=north west}} \begin{tikzpicture} \begin{axis} \addplot coordinates {(0,0) (1,1)}; \addplot coordinates {(0,1) (1,2)}; \addplot coordinates {(0,2) (1,3)}; \legend{$l_1$,$l_2$,$l_3$} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \pgfplotsset{every axis legend/.append style={ at={(0.5,1.03)}, anchor=south}} \begin{axis}[legend columns=4] \addplot coordinates {(0,0) (1,1)}; \addplot coordinates {(0,1) (1,2)}; \addplot coordinates {(0,2) (1,3)}; \legend{$l_1$,$l_2$,$l_3$} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ legend style={ at={(1,0.5)}, anchor=east}] \addplot coordinates {(0,0) (1,1)}; \addplot coordinates {(0,1) (1,2)}; \addplot coordinates {(0,2) (1,3)}; \legend{$l_1$,$l_2$,$l_3$} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[tiny,title=With legend box] \addplot[blue]{x}; \addplot[red]{2*x}; \legend{$x$,$2x$} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[tiny,title=Without legend box, legend style={draw=none}] \addplot[blue]{x}; \addplot[red]{2*x}; \legend{$x$,$2x$} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[legend pos=south west] \addplot coordinates {(0,0) (1,1)}; \addplot coordinates {(0,1) (1,2)}; \addplot coordinates {(0,2) (1,3)}; \legend{$l_1$,$l_2$,$l_3$} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[legend pos=south east] \addplot coordinates {(0,0) (1,1)}; \addplot coordinates {(0,1) (1,2)}; \addplot coordinates {(0,2) (1,3)}; \legend{$l_1$,$l_2$,$l_3$} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[legend pos=north east] \addplot coordinates {(0,0) (1,1)}; \addplot coordinates {(0,1) (1,2)}; \addplot coordinates {(0,2) (1,3)}; \legend{$l_1$,$l_2$,$l_3$} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[legend pos=north west] \addplot coordinates {(0,0) (1,1)}; \addplot coordinates {(0,1) (1,2)}; \addplot coordinates {(0,2) (1,3)}; \legend{$l_1$,$l_2$,$l_3$} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[legend pos=outer north east] \addplot coordinates {(0,0) (1,1)}; \addplot coordinates {(0,1) (1,2)}; \addplot coordinates {(0,2) (1,3)}; \legend{$l_1$,$l_2$,$l_3$} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[legend cell align=left, legend pos=outer north east] \addplot coordinates {(0,0) (1,1)}; \addplot coordinates {(0,1) (1,2)}; \addplot coordinates {(0,2) (1,3)}; \legend{a,fine,legend} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[legend cell align=center, legend pos=outer north east] \addplot coordinates {(0,0) (1,1)}; \addplot coordinates {(0,1) (1,2)}; \addplot coordinates {(0,2) (1,3)}; \legend{a,fine,legend} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[legend cell align=right, legend pos=outer north east] \addplot coordinates {(0,0) (1,1)}; \addplot coordinates {(0,1) (1,2)}; \addplot coordinates {(0,2) (1,3)}; \legend{a,fine,legend} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[legend image post style={mark=*}] \addplot+[only marks,forget plot] coordinates {(0.5,0.75) (1,1) (1.5,0.75)}; \addplot+[mark=none,smooth,domain=0:2] {-x*(x-2)}; \addlegendentry{Parabola} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
% \usetikzlibrary{patterns} \begin{tikzpicture} \begin{axis}[area legend, axis x line=bottom, axis y line=left, domain=0:1, legend style={at={(0.03,0.97)}, anchor=north west}, axis on top,xmin=0] \addplot[pattern=crosshatch dots, pattern color=blue,draw=blue, samples=500] {sqrt(x)} \closedcycle; \addplot[pattern=crosshatch, pattern color=blue!30!white, draw=blue!30!white] {x^2} \closedcycle; \addplot[red,line legend] coordinates {(0,0) (1,1)}; \legend{$\sqrt x$,$x^2$,$x$} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[legend pos=north west] \addplot {x^3}; \addplot[ybar,fill=red,draw=red!60, ybar legend,mark=none,samples=5] {-30*(x +4)}; \legend{first,second} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[legend pos=outer north east] \addplot3[surf,samples=9,domain=0:1] {(1-abs(2*(x-0.5))) * (1-abs(2*(y-0.5)))}; \addlegendentry{$\phi_x \phi_y$} \addplot3+[ultra thick] coordinates {(0,0,0) (0.5,0,1) (1,0,0)}; \addlegendentry{$\phi_x $} \addplot3+[ultra thick] coordinates {(1,0,0) (1,0.5,1) (1,1,0)}; \addlegendentry{$\phi_y $} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[reverse legend] \addplot {x}; \addlegendentry{$x$} \addplot {x^2}; \addlegendentry{$x^2$} \addplot {x^3}; \addlegendentry{$x^3$} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ legend columns=2, legend pos=outer north east, cycle multi list={% color list\nextlist [2 of]mark list }] \addplot {-x}; \addlegendentry{A1} \addplot {-x+1}; \addlegendentry{A2} \addplot {-1.2*x + 4}; \addlegendentry{B1} \addplot {-1.2*x + 5}; \addlegendentry{B2} \addplot {-1.3*x + 9}; \addlegendentry{C1} \addplot {-1.4*x + 10}; \addlegendentry{C2} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ transpose legend, legend columns=2, legend style={at={(0.5,-0.1)},anchor=north}, cycle multi list={% color list\nextlist [2 of]mark list }] \addplot {-x}; \addlegendentry{A1} \addplot {-x+1}; \addlegendentry{A2} \addplot {-1.2*x + 4}; \addlegendentry{B1} \addplot {-1.2*x + 5}; \addlegendentry{B2} \addplot {-1.3*x + 9}; \addlegendentry{C1} \addplot {-1.4*x + 10}; \addlegendentry{C2} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture}[baseline] \begin{axis} \addplot+[only marks, samples=15, error bars/y dir=both, error bars/y fixed=2.5] {3*x+2.5*rand}; \label{pgfplots:label1} \addplot+[mark=none] {3*x}; \label{pgfplots:label2} \addplot {4*cos(deg(x))}; \label{pgfplots:label3} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\pgfplotsset{footnotesize,samples=10} \begin{center}% note that \centering uses less vspace... \begin{tikzpicture} \begin{axis}[ legend columns=-1, legend entries={$(x+0)^k$;,$(x+1)^k$;,$(x+2)^k$;,$(x+3)^k$}, legend to name=named, title={$k=1$}] \addplot {x}; \addplot {x+1}; \addplot {x+2}; \addplot {x+3}; \end{axis} \end{tikzpicture} % \begin{tikzpicture} \begin{axis}[title={$k=2$}] \addplot {x^2}; \addplot {(x+1)^2}; \addplot {(x+2)^2}; \addplot {(x+3)^2}; \end{axis} \end{tikzpicture} % \begin{tikzpicture} \begin{axis}[title={$k=3$}] \addplot {x^3}; \addplot {(x+1)^3}; \addplot {(x+2)^3}; \addplot {(x+3)^3}; \end{axis} \end{tikzpicture} \\ \ref{named} \end{center}

[.tex] [.pdf]
\begin{tikzpicture} \begin{semilogyaxis}[ domain=0:4, ] \addplot {x}; \addlegendentry{$x$} \addplot {x^2}; \addlegendentry{$x^2$} \addplot {x^3}; \addlegendentry{$x^3$} \addlegendimage{empty legend} \addlegendentry{---} \addplot {x^(-1)}; \addlegendentry{$x^{-1}$} \addplot {x^(-2)}; \addlegendentry{$x^{-2}$} \addplot {x^(-3)}; \addlegendentry{$x^{-3}$} \end{semilogyaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{semilogyaxis}[ domain=0:4, ] \addplot {x}; \addlegendentry{$x$} \addplot {x^2}; \addlegendentry{$x^2$} \addplot {x^3}; \addlegendentry{$x^3$} \addlegendimage{empty legend} \addlegendentry[text width=25pt,text depth=] {Neg. Sign:} \addplot {x^(-1)}; \addlegendentry{$x^{-1}$} \addplot {x^(-2)}; \addlegendentry{$x^{-2}$} \addplot {x^(-3)}; \addlegendentry{$x^{-3}$} \end{semilogyaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{semilogyaxis}[ domain=0:4, legend entries={% $x$,$x^2$,$x^3$,% {[text width=25pt,text depth=]Neg. Sign:},% $x^{-1}$,$x^{-2}$,$x^{-3}$}, % same effect: % legend style={ % nodes={text width=25pt,text depth=}} ] \addplot {x}; \addplot {x^2}; \addplot {x^3}; \addlegendimage{empty legend} \addplot {x^(-1)}; \addplot {x^(-2)}; \addplot {x^(-3)}; \end{semilogyaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ xlabel=$x$,ylabel=$\sin x$] \addplot[blue,mark=none, domain=-10:0,samples=40] {sin(deg(x))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ axis x line=middle, axis y line=right, ymax=1.1, ymin=-1.1, xlabel=$x$,ylabel=$\sin x$ ] \addplot[blue,mark=none, domain=-10:0,samples=40] {sin(deg(x))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ axis x line=bottom, axis y line=left, xlabel=$x$,ylabel=$\sqrt{|x|}$ ] \addplot[blue,mark=none, domain=-4:4,samples=501] {sqrt(abs(x))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ minor tick num=3, axis y line=center, axis x line=middle, xlabel=$x$,ylabel=$\sin x$ ] \addplot[smooth,blue,mark=none, domain=-5:5,samples=40] {sin(deg(x))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ minor tick num=3, axis y line=left, axis x line=middle, xlabel=$x$,ylabel=$\sin x$ ] \addplot[smooth,blue,mark=none, domain=-5:5,samples=40] {sin(deg(x))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ minor tick num=1, axis x line=middle, axis y line=middle, every inner x axis line/.append style= {|->>}, every inner y axis line/.append style= {|->>}, xlabel=$x$,ylabel=$y^3$ ] \addplot[blue,domain=-3:5] {x^3}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ separate axis lines, % important ! every outer x axis line/.append style= {-stealth}, every outer y axis line/.append style= {-stealth}, ] \addplot[blue,id=DoG, samples=100, domain=-15:15] gnuplot{1.3*exp(-x**2/10) - exp(-x**2/20)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ separate axis lines, every outer x axis line/.append style= {-stealth,red}, every outer y axis line/.append style= {-stealth,green!30!black}, ] \addplot[blue, samples=100, domain=-15:15] {1.3*exp(0-x^2/10) - exp(0-x^2/20)}; % Unfortunately, there is a bug in PGF 2.00 % something like exp(-10^2) % must be written as exp(0-10^2) :-( \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ separate axis lines=false, every outer x axis line/.append style= {-stealth,red}, every outer y axis line/.append style= {-stealth,green!30!black}, ] \addplot[blue,id=DoG, samples=100, domain=-15:15] gnuplot{1.3*exp(-x**2/10) - exp(-x**2/20)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ scale only axis, xmin=-5,xmax=5, axis y line*=left,% the '*' avoids arrow heads xlabel=$x$, ylabel=First ordinate] \addplot {x^2}; \end{axis} \begin{axis}[ scale only axis, xmin=-5,xmax=5, axis y line*=right, axis x line=none, ylabel=Second ordinate] \addplot[red] {3*x}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
% \usepackage{textcomp} \begin{tikzpicture} \begin{axis}[ scale only axis, xmin=-5,xmax=5, axis y line*=left,%'*' avoids arrow heads xlabel=$x$, ylabel=Absolute] \addplot {x^2}; \end{axis} \begin{axis}[ scale only axis, xmin=-5,xmax=5, ymin=0,ymax=1000, yticklabel= {$\pgfmathprintnumber{\tick}$\textperthousand}, axis y line*=right, axis x line=none, ylabel=per thousand] \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ axis x line=bottom, axis x discontinuity=parallel, axis y line=left, xmin=360, xmax=600, ymin=0, ymax=7, enlargelimits=false ] \addplot coordinates { (420,2) (500,6) (590,4) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ axis x line=bottom, axis y line=center, tick align=outside, axis y discontinuity=crunch, ymin=95, enlargelimits=false ] \addplot[blue,mark=none, domain=-4:4,samples=20] {x*x+x+104}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ axis x line=bottom, axis y line=center, tick align=outside, axis y discontinuity=crunch, xtickmax=3, ytickmin=110, ymin=95, enlargelimits=false ] \addplot[blue,mark=none, domain=-4:4,samples=20] {x*x+x+104}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ hide x axis, hide y axis, title={$x^2\cos(x)$}] \addplot {cos(x)*x^2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ hide x axis, axis y line=left, title={$x^2\cos(x)$}] \addplot {cos(x)*x^2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[colorbar] \addplot[mesh,ultra thick] {x}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[colorbar,colormap/greenyellow] \addplot[mesh,ultra thick] {x}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[colorbar horizontal] \addplot[mesh,ultra thick] {x}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[colorbar right] \addplot[mesh,thick,samples=150,domain=0.1:3] {1/x}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[colorbar left] \addplot[mesh,thick,samples=150] {x*sin(deg(4*x))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[colorbar horizontal] \addplot[only marks,scatter, scatter src={mod(\coordindex,15)},samples=150] {rand}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ colorbar horizontal, colorbar style={ at={(0.5,1.03)},anchor=south, xticklabel pos=upper }, title style={yshift=1cm}, title=Customization: ``colorbar top''] \addplot[mesh,thick,samples=150,domain=0.1:3] {x}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ colorbar horizontal, colorbar style={ at={(1,1.03)},anchor=south east, width=0.5* \pgfkeysvalueof{/pgfplots/parent axis width}, xticklabel pos=upper, }, title style={yshift=1cm}, title=More Customization: ``colorbar top''] \addplot[mesh,thick,samples=150,domain=0.1:3] {x}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ view/az=45, colorbar, colorbar/width=2cm, colormap/blackwhite] \addplot3[surf,domain=0:1,y domain=-3:3] {x*(1-x)*tanh(y)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[colorbar sampled] \addplot[mesh,samples=40] {sin(deg(x))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[colorbar sampled,colorbar style={samples=8}] \addplot[mesh,samples=40] {sin(deg(x))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[colorbar sampled line] \addplot+[scatter] {sin(deg(x))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\pgfplotsset{footnotesize,samples=10, domain=0:1,point meta min=0, point meta max=1} \begin{center}% note that \centering uses less vspace... \begin{tikzpicture} \begin{axis}[colorbar,colorbar horizontal,colorbar to name={storedcolorbar}] \addplot[scatter,only marks,mark=*] {rnd}; \end{axis} \end{tikzpicture} % \begin{tikzpicture} \begin{axis} \addplot+[domain=0:1,mark=none,mesh] {x^2}; \end{axis} \end{tikzpicture} % \begin{tikzpicture} \begin{axis}[view={0}{90}] \addplot3[surf] {x*y}; \end{axis} \end{tikzpicture} \\ \ref{storedcolorbar} \end{center}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[normalsize, title=A ``normalsize'' figure, xlabel=The $x$ axis, ylabel=The $y$ axis, minor tick num=1, legend entries={Leg}] \addplot {max(4*x,7*x)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[small, title=A ``small'' figure, xlabel=The $x$ axis, ylabel=The $y$ axis, minor tick num=1, legend entries={Leg}] \addplot {x^2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[footnotesize, title=A ``footnotesize'' figure, xlabel=The $x$ axis, ylabel=The $y$ axis, minor tick num=1, legend entries={Leg}] \addplot+[const plot] coordinates { (0,0) (1,1) (3,3) (5,10) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[tiny, title=A ``tiny'' figure, xlabel=The $x$ axis, ylabel=The $y$ axis, minor tick num=1, legend entries={Leg}] \addplot+[const plot] coordinates { (0,0) (1,1) (3,3) (5,10) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot {x^2+2} \closedcycle; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot+[fill] {x^2+2} \closedcycle; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[stack plots=y] \addplot+[fill] coordinates {(0,1) (1,1) (2,2) (3,2)} \closedcycle; \addplot+[fill] coordinates {(0,1) (1,1) (2,2) (3,2)} \closedcycle; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot coordinates {(0,1) (1,2) (0,3) (-1,2)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot coordinates {(0,1) (1,2) (0,3) (-1,2)} --cycle; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot+[fill] coordinates {(0,1) (1,2) (0,3) (-1,2)} --cycle; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[x filter/.code= {\pgfmathadd{#1}{0.5}}] \addplot coordinates { (4,0) (6,1) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ samples=20, x filter/.code={ \ifnum\coordindex>4 \ifnum\coordindex<11 \def\pgfmathresult{} \fi \fi }] \addplot {x^2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ samples=20, skip coords between index={5}{11}, skip coords between index={15}{18}] \addplot {x^2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ restrict y to domain=-10:10, samples=1000, % some fine-tuning for the display: width=10cm, height=210pt, xmin=-4.7124, xmax=4.7124, xtick={-4.7124,-1.5708,...,10}, xticklabels={$-\frac32 \pi$,$-\pi/2$,$\pi/2$,$\frac32 \pi$}, axis x line=center, axis y line=center] \addplot[blue] gnuplot[id=tangens,domain=-1.5*pi:1.5*pi] {tan(x)}; \legend{$\tan(x)$} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot+[error bars/.cd, y dir=plus,y explicit] coordinates { (0,0) +- (0.5,0.1) (0.1,0.1) +- (0.05,0.2) (0.2,0.2) +- (0,0.05) (0.5,0.5) +- (0.1,0.2) (1,1) +- (0.3,0.1)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot+[error bars/.cd, y dir=both,y explicit, x dir=both,x fixed=0.05, error mark=diamond*] coordinates { (0,0) +- (0.5,0.1) (0.1,0.1) +- (0.05,0.2) (0.2,0.2) +- (0,0.05) (0.5,0.5) +- (0.1,0.2) (1,1) +- (0.3,0.1)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\pgfplotstabletypeset{pgfplots.testtable2.dat} \begin{tikzpicture} \begin{loglogaxis} \addplot+[error bars/.cd, x dir=both,x fixed relative=0.5, y dir=both,y explicit relative, error mark=triangle*] table[x=x,y=y,y error=errory] {pgfplots.testtable2.dat}; \end{loglogaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[enlargelimits=false] \addplot[red,mark=*] plot[error bars/.cd, y dir=minus,y fixed relative=1, x dir=minus,x fixed relative=1, error mark=none, error bar style={dotted}] coordinates {(0,0) (0.1,0.1) (0.2,0.2) (0.5,0.5) (1,1)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{loglogaxis}[ grid=both, tick align=outside, tickpos=left] \addplot coordinates {(100,1e-4) (500,1e-5) (1000,3e-6)}; \addplot coordinates {(100,1e-5) (500,4e-6) (1000,2e-6)}; \end{loglogaxis} \end{tikzpicture}

[.tex] [.pdf]
\tikzstyle{every pin}=[fill=white, draw=black, font=\footnotesize] \begin{tikzpicture} \begin{loglogaxis}[ xlabel={\textsc{Dof}}, ylabel={$L_2$ Error}] \addplot coordinates { (11, 6.887e-02) (71, 3.177e-02) (351, 1.341e-02) (1471, 5.334e-03) (5503, 2.027e-03) (18943, 7.415e-04) (61183, 2.628e-04) (187903, 9.063e-05) (553983, 3.053e-05) }; \node[coordinate,pin=above:{Bad!}] at (axis cs:5503,2.027e-03) {}; \node[coordinate,pin=left:{Good!}] at (axis cs:187903,9.063e-05) {}; \end{loglogaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{loglogaxis}[ xlabel=\textsc{Dof}, ylabel=$L_2$ Error ] \draw (axis cs:1793,4.442e-05) |- (axis cs:4097,1.207e-05) node[near start,left] {$\frac{dy}{dx} = -1.58$}; \addplot coordinates { (5, 8.312e-02) (17, 2.547e-02) (49, 7.407e-03) (129, 2.102e-03) (321, 5.874e-04) (769, 1.623e-04) (1793, 4.442e-05) (4097, 1.207e-05) (9217, 3.261e-06) }; \end{loglogaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \draw[red,-stealth] (axis cs:1000,0) -- % = line-to ++ % = calculate a vector sum (axis direction cs:1000,0); \addplot [only marks,mark=*] coordinates { (1000,0) (2000,1) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot3[surf] {x^2 - y^2}; \draw (rel axis cs:0,0,1) -- (rel axis cs:1,1,1); \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ xlabel=$x$, ylabel=$y$, zlabel=$z$, every axis x label/.style={ at={(rel axis cs:0.5,-0.15,-0.15)}}, every axis y label/.style={ at={(rel axis cs:1.15,0.5,-0.15)}}, every axis z label/.style={ at={(rel axis cs:-0.15,-0.15,0.5)}}, ] \addplot3[surf] {x*(1-x)*y}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot[blue,domain=0:360] {sin(x)} [yshift=8pt] node[pos=0] {$0$} node[pos=0.25] {$\pi/2$} node[pos=0.5] {$\pi$} node[pos=0.75] {$3/2\pi$} node[pos=1] {$2\pi$} ; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[title=Snap to nearest for scatter plots] \addplot+[only marks] coordinates {(0,0) (1,1) (2,2) (3,3)} node[pos=0, pin=0 :0 ] {} node[pos=0.1, pin=90 :0.1 ] {} node[pos=0.2, pin=200:0.2 ] {} node[pos=0.3, pin=135:0.3 ] {} node[pos=0.4, pin=0 :0.4 ] {} node[pos=0.5, pin=60 :0.5 ] {} node[pos=0.75,pin=180:0.75] {} node[pos=1, pin=90 :1 ] {} ; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot[blue,domain=0:360,samples=31] {sin(x)} [every node/.style={yshift=8pt},sloped] node[pos=0] {$0$} node[pos=0.25] {$\pi/2$} node[pos=0.5] {$\pi$} node[pos=0.75] {$3/2\pi$} node[pos=1] {$2\pi$} ; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
% same as above with different number of samples \begin{tikzpicture} \begin{axis} \addplot[blue,domain=0:360,samples=25] {sin(x)} [every node/.style={yshift=8pt},sloped] node[pos=0] {$0$} node[pos=0.25] {$\pi/2$} node[pos=0.5] {$\pi$} node[pos=0.75] {$3/2\pi$} node[pos=1] {$2\pi$} ; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[tiny] \addplot coordinates { (0,0) (1,0) (1,1) (2,1)} [pos segment=0,yshift=7pt,font=\footnotesize] node[pos=0] {0} node[pos=0.5] {0.5} node[pos=1] {1}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot3[contour gnuplot,domain=0:1] {x*y} [sloped, allow upside down, pos segment=2, every node/.style={yshift=7pt}] node[pos=0] {0} node[pos=0.5] {0.5} node[pos=1] {1} ; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot {x} [left,/pgf/number format/relative=0] node[pos=0.5] {% \pgfplotspointplotattime $(\pgfmathprintnumber {\pgfkeysvalueof{/data point/x}}, \pgfmathprintnumber {\pgfkeysvalueof{/data point/y}})$ } node[pos=0.25] {% \pgfplotspointplotattime $(\pgfmathprintnumber {\pgfkeysvalueof{/data point/x}}, \pgfmathprintnumber {\pgfkeysvalueof{/data point/y}})$ } node[pos=0.7,pin=180:{% \pgfplotspointplotattime{0.7} $(\pgfmathprintnumber {\pgfkeysvalueof{/data point/x}}, \pgfmathprintnumber {\pgfkeysvalueof{/data point/y}})$ }] {} ; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[symbolic x coords={A,B,C,D}] \addplot coordinates {(A,0) (B,1) (C,1) (D,2)} [left] node[pos=0.3] {% \pgfplotspointplotattime $(\pgfkeysvalueof{/data point/x}, \pgfmathprintnumber {\pgfkeysvalueof{/data point/y}})$ } node[pos=0.7,pin=180:{% \pgfplotspointplotattime{0.7} $(\pgfkeysvalueof{/data point/x}, \pgfmathprintnumber {\pgfkeysvalueof{/data point/y}})$ }] {} ; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture}[] % An undecorated graphics with a lot of % pretty-printing styles: \begin{axis}[ axis lines=middle, title=Undecorated Graphics, xmin=-2, xmax=2, ymin=-2, ymax=2, xtick={-1,1}, ytick={-1,1}, % this disables the standard % tick label *text* (but not the line) yticklabel=\ , extra description/.code={ % this generates custom y labels to implement % individual styles for every tick: \node[below left] at (axis cs:0,-1) {$-1$}; \node[above left] at (axis cs:0,1) {$1$}; }, axis line style={->}, ] \addplot[blue,samples=100,domain=0:2*pi] ({sin(deg(2*x))}, {sin(deg(x))}); \end{axis} \end{tikzpicture}

[.tex] [.pdf]
% requires \usetikzlibrary{decorations.markings} \begin{tikzpicture}[] % Same as in previous example, but with decorations: \begin{axis}[axis lines=middle, title=Decorated Graphics, xmin=-2, xmax=2, ymin=-2, ymax=2, xtick={-1,1}, ytick={-1,1}, % this disables the standard % tick label *text* (but not the line) yticklabel=\ , extra description/.code={ % this generates custom y labels to implement % individual styles for every tick: \node[below left] at (axis cs:0,-1) {$-1$}; \node[above left] at (axis cs:0,1) {$1$}; }, axis line style={->}, ] \addplot[blue,samples=100,domain=0:2*pi, postaction={decorate},% ------ decoration={markings, % ------ mark=at position 0.25 with {\arrow{stealth}}, mark=at position 0.5 with {\arrow{stealth}}, mark=at position 0.75 with {\arrow{stealth}}} ] ({sin(deg(2*x))}, {sin(deg(x))}); \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[legend pos=outer north east] \addplot table {% plot X versus Y. This is original data. X Y 1 1 2 4 3 9 4 16 5 25 6 36 }; \addplot table[ y={create col/linear regression={y=Y}}] % compute a linear regression from the input table { X Y 1 1 2 4 3 9 4 16 5 25 6 36 }; %\xdef\slope{\pgfplotstableregressiona} %<-- might be handy occasionally \addlegendentry{$y(x)$} \addlegendentry{% $\pgfmathprintnumber{\pgfplotstableregressiona} \cdot x \pgfmathprintnumber[print sign]{\pgfplotstableregressionb}$} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{loglogaxis} \addplot table[x=dof,y=error2] {pgfplotstable.example1.dat}; \addlegendentry{$y(x)$} \addplot table[ x=dof, y={create col/linear regression={y=error2}}] {pgfplotstable.example1.dat}; % might be handy occasionally: %\xdef\slope{\pgfplotstableregressiona} \addlegendentry{slope $\pgfmathprintnumber{\pgfplotstableregressiona}$} \end{loglogaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{loglogaxis} \addplot table[x=dof,y=error2] {pgfplotstable.example1.dat}; \addlegendentry{$y(x)$} \addplot table[ x=dof, y={create col/linear regression={ y=error2, variance list={1000,800,600,500,400}} } ] {pgfplotstable.example1.dat}; \addlegendentry{slope $\pgfmathprintnumber{\pgfplotstableregressiona}$} \end{loglogaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[y=2cm] \addplot coordinates {(-2,0) (-1,1) (0,0) (1,1) (2,0)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\tikzset{every mark/.append style={scale=2}} \begin{tikzpicture} \begin{axis}[y=2cm] \addplot coordinates {(-2,0) (-1,1) (0,0) (1,1) (2,0)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[y=2cm] \addplot+[ mark=halfcircle*, every mark/.append style={rotate=90}] coordinates {(-2,0) (-1,1) (0,0) (1,1) (2,0)}; \addplot+[ mark=halfcircle*, every mark/.append style={rotate=180}] coordinates {(-2,-0.1) (-1,0.9) (0,-0.1) (1,0.9) (2,-0.1)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[y=2cm] \addplot[ blue,mark color=blue!50!white, mark=halfcircle*] coordinates {(-2,0) (-1,1) (0,0) (1,1) (2,0)}; \addplot[ red,mark color=red!50!white, mark=halfsquare*] coordinates {(-2,-0.1) (-1,0.9) (0,-0.1) (1,0.9) (2,-0.1)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
% Overwrite any cycle list: \pgfplotsset{ every axis plot post/.append style={ mark=triangle, every mark/.append style={rotate=90}}} \begin{tikzpicture} \begin{axis}[y=2cm] \addplot coordinates {(-2,0) (-1,1) (0,0) (1,1) (2,0)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
% requires \usetikzlibrary{spy} \begin{tikzpicture}[spy using outlines= {circle, magnification=6, connect spies}] \begin{axis}[no markers,grid=major, every axis plot post/.append style={thick}] \addplot coordinates {(0, 0.0) (0, 0.9) (1, 0.9) (2, 1) (3, 0.9) (80, 0)}; \addplot +[line join=round] coordinates {(0, 0.0) (0, 0.9) (2, 0.9) (3, 1) (4, 0.9) (80, 0)}; \addplot +[line join=bevel] coordinates {(0, 0.0) (0, 0.9) (3, 0.9) (4, 1) (5, 0.9) (80, 0)}; \addplot +[miter limit=5] coordinates {(0, 0.0) (0, 0.9) (4, 0.9) (5, 1) (6, 0.9) (80, 0)}; \coordinate (spypoint) at (axis cs:3,1); \coordinate (magnifyglass) at (axis cs:60,0.7); \end{axis} \spy [blue, size=2.5cm] on (spypoint) in node[fill=white] at (magnifyglass); \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[enlarge x limits=false] \addplot[red,samples=500] {sin(deg(x))}; \addplot[orange,samples=7] {sin(deg(x))}; \addplot[teal,const plot, samples=14] {sin(deg(x))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ colormap={bw}{gray(0cm)=(0); gray(1cm)=(1)}] \addplot+[scatter,only marks, domain=0:8,samples=100] {exp(x)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[colormap/bluered] \addplot+[scatter, scatter src=x,samples=50] {sin(deg(x))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ stack plots=y,stack dir=minus, cycle list name=color] \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ stack plots=y,stack dir=minus, cycle list name=exotic] \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ stack plots=y,stack dir=minus, cycle list name=black white] \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ stack plots=y,stack dir=minus, cycle list name=mark list] \addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)}; \addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)}; \addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)}; \addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)}; \addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)}; \addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)}; \addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)}; \addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)}; \addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)}; \addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)}; \addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)}; \addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)}; \addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ stack plots=y,stack dir=minus, cycle list name=mark list*] \addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)}; \addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)}; \addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)}; \addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)}; \addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)}; \addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)}; \addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)}; \addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)}; \addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)}; \addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)}; \addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)}; \addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)}; \addplot+[blue] coordinates {(0,1) (0.5,1) (1,1)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ stack plots=y,stack dir=minus, cycle list name=color list] \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ stack plots=y,stack dir=minus, cycle list name=linestyles] \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ stack plots=y,stack dir=minus, cycle list name=linestyles*] \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \addplot coordinates {(0,1) (0.5,1) (1,1)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ cycle multi list={ red,blue\nextlist solid,{dotted,mark options={solid}}\nextlist mark=*,mark=x,mark=o }, samples=3, legend entries={0,...,20}, legend pos=outer north east ] \addplot {x}; \addplot {x-1}; \addplot {x-2}; \addplot {x-3}; \addplot {x-4}; \addplot {x-5}; \addplot {x-6}; \addplot {x-7}; \addplot {x-8}; \addplot {x-9}; \addplot {x-10}; \addplot {x-11}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ title={Cycle color between successive plots, then marks}, cycle multi list={ mark list\nextlist blue,red% }, samples=3, legend entries={0,...,20}, legend pos=outer north east ] \addplot {x}; \addplot {x-1}; \addplot {x-2}; \addplot {x-3}; \addplot {x-4}; \addplot {x-5}; \addplot {x-6}; \addplot {x-7}; \addplot {x-8}; \addplot {x-9}; \addplot {x-10}; \addplot {x-11}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ title={Cycle 2 marks between successive plots, then colors}, cycle multi list={% color list\nextlist [2 of]mark list }, samples=3, legend entries={0,...,20}, legend pos=outer north east ] \addplot {x}; \addplot {x-1}; \addplot {x-2}; \addplot {x-3}; \addplot {x-4}; \addplot {x-5}; \addplot {x-6}; \addplot {x-7}; \addplot {x-8}; \addplot {x-9}; \addplot {x-10}; \addplot {x-11}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ axis background/.style={fill=blue!10}] \addplot3[surf,y domain=0:1] {sin(deg(x)) * y*(1-y)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{semilogyaxis}[ axis background/.style={ shade,top color=gray,bottom color=white}, legend style={fill=white}] \addplot {exp(-x)}; \addplot {exp(-4*x)}; \legend{$e^{-x}$,$e^{-4x}$} \end{semilogyaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[colorbar] \addplot[mesh,point meta=y,thick] {x^2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ title=Axis wide color mapping, colorbar, samples=50,point meta rel=axis wide, point meta=y] \addplot[mesh,thick] {sin(deg(x))}; \addplot[mesh,thick] {3*tanh(x)}; \end{axis} \end{tikzpicture} ~ \begin{tikzpicture} \begin{axis}[ title=Per Plot color mapping, colorbar, samples=50, point meta rel=per plot, point meta=y] \addplot[mesh,thick] {sin(deg(x))}; \addplot[mesh,thick] {3*tanh(x)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
% requires \usepackage[pdftex]{ocg} \begin{tikzpicture} \begin{axis}[ title=Dynamic PDF Layer Support (see Acrobat Layers), view={110}{35}] \addplot3+[ execute at begin plot visualization=\begin{ocg}{First Layer}{FirstLayer}{0}, execute at end plot visualization=\end{ocg}, ] coordinates {(0,0,12) (0,1,2) (1,0,6) (0,0,12)}; \addplot3+[ execute at begin plot visualization=\begin{ocg}{Second Layer}{SecondLayer}{0}, execute at end plot visualization=\end{ocg}, ] coordinates {(0,0,9) (0,1,8) (1,0,4) (0,0,9)}; \addplot3+[ execute at begin plot visualization=\begin{ocg}{Third Layer}{ThirdLayer}{0}, execute at end plot visualization=\end{ocg}, ] coordinates {(0,0,1) (0,1,7) (1,0,3) (0,0,1)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{loglogaxis}[ % some descriptions: table/x=Basis, table/y={L2/r}, xlabel=Degrees of Freedom, ylabel=relative Error, title=New Experiments (old in gray), legend entries={$e_1$,$e_2$,$e_3$} ] \addplot[black!15,forget plot] table {plotdata/oldexperiment1.dat}; \addplot[black!15,forget plot] table {plotdata/oldexperiment2.dat}; \addplot[black!15,forget plot] table {plotdata/oldexperiment3.dat}; \addplot table {plotdata/newexperiment1.dat}; \addplot table {plotdata/newexperiment2.dat}; \addplot table {plotdata/newexperiment3.dat}; \end{loglogaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{loglogaxis}[ forget plot style={opacity=0.2}, % same as above: table/x=Basis, table/y={L2/r}, xlabel=Degrees of Freedom, ylabel=relative Error, title=New Experiments (old in transparent), legend entries={$e_1$,$e_2$,$e_3$}, ] \foreach \exp in {1,2,3} { \addplot+[forget plot] table {plotdata/oldexperiment\exp.dat}; \addplot table {plotdata/newexperiment\exp.dat}; } \end{loglogaxis} \end{tikzpicture}

[.tex] [.pdf]
\pgfplotsset{every axis/.append style={ before end axis/.code={ \fill[red] (axis cs:1,10) circle(5pt); \node at (axis cs:-4,10) {\large This text has been inserted using \texttt{before end axis}.}; }}} \begin{tikzpicture} \begin{axis} \addplot {x^2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\pgfplotsset{every axis/.append style={ after end axis/.code={ \fill[red] (axis cs:1,10) circle(5pt); \node at (axis cs:-4,10) {\large This text has been inserted using \texttt{after end axis}.}; }}} \begin{tikzpicture} \begin{axis} \addplot {x^2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ axis on top=true, axis x line=middle, axis y line=middle] \addplot+[fill] {x^3} \closedcycle; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ axis on top=false, axis x line=middle, axis y line=middle] \addplot+[fill] {x^3} \closedcycle; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot+[ scatter, scatter src=y, samples=40, visualization depends on= {5*cos(deg(x)) \as \perpointmarksize}, scatter/@pre marker code/.append style= {/tikz/mark size=\perpointmarksize} ] {sin(deg(x))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{semilogyaxis}[log ticks with fixed point] \addplot+[domain=0:10] {exp(x)}; \end{semilogyaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{loglogaxis}[ log ticks with fixed point, xlabel=Cost,ylabel=Error] \addplot coordinates { (5, 8.31160034e-02) (17, 2.54685628e-02) (49, 7.40715288e-03) (129, 2.10192154e-03) (321, 5.87352989e-04) (769, 1.62269942e-04) (1793, 4.44248889e-05) (4097, 1.20714122e-05) (9217, 3.26101452e-06) }; \addplot coordinates { (7, 8.47178381e-02) (31, 3.04409349e-02) (111, 1.02214539e-02) (351, 3.30346265e-03) (1023, 1.03886535e-03) (2815, 3.19646457e-04) (7423, 9.65789766e-05) (18943, 2.87339125e-05) (47103, 8.43749881e-06) }; \legend{Case 1,Case 2} \end{loglogaxis} \end{tikzpicture}

[.tex] [.pdf]
\pgfplotsset{ samples=15, width=7cm, xlabel=$x$, ylabel=$f(x)$, extra y ticks={45}, legend style={at={(0.03,0.97)}, anchor=north west}} \begin{tikzpicture} \begin{semilogyaxis}[ log plot exponent style/.style={ /pgf/number format/fixed zerofill, /pgf/number format/precision=1}, domain=-5:10] \addplot {exp(x)}; \addplot {exp(2*x)}; \legend{$e^x$,$e^{2x}$} \end{semilogyaxis} \end{tikzpicture}

[.tex] [.pdf]
\pgfplotsset{ samples=15, width=7cm, xlabel=$x$, ylabel=$f(x)$, extra y ticks={45}, legend style={at={(0.03,0.97)}, anchor=north west}} \begin{tikzpicture} \begin{semilogyaxis}[ log plot exponent style/.style={ /pgf/number format/fixed, /pgf/number format/use comma, /pgf/number format/precision=2}, domain=-5:10] \addplot {exp(x)}; \addplot {exp(2*x)}; \legend{$e^x$,$e^{2x}$} \end{semilogyaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture}% \begin{loglogaxis} [title=Standard options, width=6cm] \addplot coordinates { (1e-2,10) (3e-2,100) (6e-2,200) }; \end{loglogaxis} \end{tikzpicture}%

[.tex] [.pdf]
\pgfplotsset{every axis/.append style={% width=6cm, xmin=7e-3,xmax=7e-2, extra x ticks={3e-2,6e-2}, extra x tick style={major tick length=0pt,font=\footnotesize} }}% \begin{tikzpicture}% \begin{loglogaxis}[ xtick={1e-2}, title=with minor tick identification, extra x tick style={ log identify minor tick positions=true}] \addplot coordinates { (1e-2,10) (3e-2,100) (6e-2,200) }; \end{loglogaxis} \end{tikzpicture}% \begin{tikzpicture}% \begin{loglogaxis}[ xtick={1e-2}, title=without minor tick identification, extra x tick style={ log identify minor tick positions=false}] \addplot coordinates { (1e-2,10) (3e-2,100) (6e-2,200) }; \end{loglogaxis}% \end{tikzpicture}%
\begin{tikzpicture} \begin{axis} % keys valid for single plots: \addplot ...; % uses the "cycle list" to determine keys \addplot[key=value,key2=value2] ... ; % uses the provided keys (not the "cycle list") \addplot+[key=value,key2=value2] ... ; % appends something to the "cycle list" \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[x=1cm,y=1cm] \addplot expression[domain=0:3] {2*x}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[x=1cm,y=0.5cm,y dir=reverse] \addplot expression[domain=0:3] {2*x}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[x={(1cm,0.1cm)},y=1cm] \addplot expression[domain=0:3] {2*x}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ x={(5pt,1pt)}, y={(-4pt,4pt)}] \addplot {1-x^2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ x={(1cm,-0.5cm)}, y=1cm, z=0cm, axis on top, scale mode=scale uniformly, ] \addplot3[surf,shader=interp] {x*y}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[axis equal=false,grid=major] \addplot[blue] expression[domain=0:2*pi,samples=300] {sin(deg(x))*sin(2*deg(x))}; \end{axis} \end{tikzpicture} \hspace{1cm} \begin{tikzpicture} \begin{axis}[axis equal=true,grid=major] \addplot[blue] expression[domain=0:2*pi,samples=300] {sin(deg(x))*sin(2*deg(x))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{loglogaxis}[axis equal=false,grid=major] \addplot expression[domain=1:10000] {x^-2}; \end{loglogaxis} \end{tikzpicture} \hspace{1cm} \begin{tikzpicture} \begin{loglogaxis}[axis equal=true,grid=major] \addplot expression[domain=1:10000] {x^-2}; \end{loglogaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[axis equal image=false,grid=major] \addplot[blue] expression[domain=0:2*pi,samples=300] {sin(deg(x))*sin(2*deg(x))}; \end{axis} \end{tikzpicture} \hspace{1cm} \begin{tikzpicture} \begin{axis}[axis equal image=true,grid=major] \addplot[blue] expression[domain=0:2*pi,samples=300] {sin(deg(x))*sin(2*deg(x))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{loglogaxis}[axis equal image=false,grid=major] \addplot expression[domain=1:10000] {x^-2}; \end{loglogaxis} \end{tikzpicture} \hspace{1cm} \begin{tikzpicture} \begin{loglogaxis}[axis equal image=true,grid=major] \addplot expression[domain=1:10000] {x^-2}; \end{loglogaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[unit vector ratio=2 1,small] \addplot coordinates {(0,0) (1,1)}; \addplot table[row sep=\\,col sep=&] { x & y \\ 0 & 1 \\ 1 & 0 \\ }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[footnotesize,xlabel=$x$,ylabel=$y$,unit vector ratio=] \addplot3[surf,samples=10,domain=0:1] {(1-x)*y}; \end{axis} \end{tikzpicture} \begin{tikzpicture} \begin{axis}[footnotesize,xlabel=$x$,ylabel=$y$,unit vector ratio=1 1 1] \addplot3[surf,samples=10,domain=0:1] {(1-x)*y}; \end{axis} \end{tikzpicture} \begin{tikzpicture} \begin{axis}[footnotesize,xlabel=$x$,ylabel=$y$,unit vector ratio=0.25 0.5] \addplot3[surf,samples=10,domain=0:1] {(1-x)*y}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[footnotesize,xlabel=$x$,ylabel=$y$,unit vector ratio=] \addplot3[surf,samples=10,domain=0:1] {(1-x)*y}; \end{axis} \end{tikzpicture} \begin{tikzpicture} \begin{axis}[footnotesize,xlabel=$x$,ylabel=$y$, unit rescale keep size=false, unit vector ratio=1 1 1] \addplot3[surf,samples=10,domain=0:1] {(1-x)*y}; \end{axis} \end{tikzpicture} \begin{tikzpicture} \begin{axis}[footnotesize,xlabel=$x$,ylabel=$y$, unit vector ratio*=0.25 0.5, % the '*' implies 'unit rescale keep size=false' ] \addplot3[surf,samples=10,domain=0:1] {(1-x)*y}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[y post scale=1] \addplot {x}; \end{axis} \end{tikzpicture} \begin{tikzpicture} \begin{axis}[y post scale=2] \addplot {x}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[z post scale=1] \addplot3[surf] {x*y}; \end{axis} \end{tikzpicture} \begin{tikzpicture} \begin{axis}[z post scale=2] \addplot3[surf] {x*y}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[title=Auto Limits] \addplot {x^2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[title={\texttt{xmin=0}},xmin=0] \addplot {x^2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[title={\texttt{ymax=10}},ymax=10] \addplot {x^2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ % Show (automatically) computed limits: title={ Axis limits are $ [\pgfmathprintnumber{\pgfkeysvalueof{/pgfplots/xmin}} :\pgfmathprintnumber{\pgfkeysvalueof{/pgfplots/xmax}} ] \times [\pgfmathprintnumber{\pgfkeysvalueof{/pgfplots/ymin}} :\pgfmathprintnumber{\pgfkeysvalueof{/pgfplots/ymax}} ]$ }, ] \addplot {x^2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ xlabel=$x$ \emph{decreasing} $\to$, x dir=reverse] \addplot {x+rand*0.3}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ ylabel=$y$ \emph{decreasing} $\to$, y dir=reverse] \addplot {x^2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ ylabel=$y$ \emph{decreasing} $\to$, xlabel=$x$ normal, title=reversed axis, y dir=reverse, colorbar, colorbar style={y dir=reverse}] \addplot+[mesh,scatter] {x^15}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot {5 * x^3 - x^2 + 4*x -2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[enlarge x limits=0.2] \addplot {5 * x^3 - x^2 + 4*x -2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[minor x tick num=4, enlarge x limits={rel=0.5,upper} ] \addplot {5 * x^3 - x^2 + 4*x -2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[minor x tick num=4, enlarge x limits={abs=3} ] \addplot {5 * x^3 - x^2 + 4*x -2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{loglogaxis}[enlarge x limits={abs=11}] \addplot+[domain=1:100000] {x^-2}; \end{loglogaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \pgfplotsset{ every axis plot post/.append style= {mark=none}} \begin{axis}[ legend style={ at={(0.03,0.97)},anchor=north west}, domain=0:1] \addplot {x^2}; \addplot {exp(x)}; \legend{$x^2$,$e^x$} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\pgfplotsset{my personal style/.style= {grid=major,font=\large}} \begin{tikzpicture} \begin{axis}[my personal style] \addplot coordinates {(0,0) (1,1)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[symbolic x coords={a,b,c,d,e,f,g,h,i}] \addplot+[smooth] coordinates { (a,42) (b,50) (c,80) (f,60) (g,62) (i,90)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
% requires \usepgfplotslibrary{dateplot} ! \pgfplotstabletypeset[string type]{plotdata/accounts.dat} \begin{tikzpicture} \begin{axis}[ date coordinates in=x, xticklabel={\day.\month.}, xlabel={2008}, stack plots=y, yticklabel={\pgfmathprintnumber{\tick}\EUR{}}, % <- requires \usepackage{eurosym} ylabel=Total credit, ylabel style={yshift=10pt}, legend style={ at={(0.5,-0.3)},anchor=north,legend columns=-1}] \addplot table[x=date,y=account1] {plotdata/accounts.dat}; \addplot table[x=date,y=account2] {plotdata/accounts.dat}; \addplot table[x=date,y=account3] {plotdata/accounts.dat}; \legend{Giro,Tagesgeld,Sparbuch} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
% requires \usepgfplotslibrary{dateplot} ! \begin{tikzpicture} \begin{axis}[ date coordinates in=x, xtick=data, xticklabel style= {rotate=90,anchor=near xticklabel}, xticklabel=\day. \hour:\minute, date ZERO=2009-08-18,% <- improves precision! ] \addplot coordinates { (2009-08-18 09:00, 050) (2009-08-18 12:00, 100) (2009-08-18 15:00, 100) (2009-08-18 18:35, 100) (2009-08-18 21:30, 040) (2009-08-19, 020) (2009-08-19 3:00, 000) (2009-08-19 6:0, 035) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[symbolic x coords={a,b,c,d,e,f,g,h,i}] \addplot+[smooth] coordinates { (a,42) (b,50) (c,80) (f,60) (g,62) (i,90)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
% requires \usepgfplotslibrary{dateplot} ! \pgfplotstabletypeset[string type]{plotdata/accounts.dat} \begin{tikzpicture} \begin{axis}[ date coordinates in=x, xticklabel={\day.\month.}, xlabel={2008}, stack plots=y, yticklabel={\pgfmathprintnumber{\tick}\EUR{}}, % <- requires \usepackage{eurosym} ylabel=Total credit, ylabel style={yshift=10pt}, legend style={ at={(0.5,-0.3)},anchor=north,legend columns=-1}] \addplot table[x=date,y=account1] {plotdata/accounts.dat}; \addplot table[x=date,y=account2] {plotdata/accounts.dat}; \addplot table[x=date,y=account3] {plotdata/accounts.dat}; \legend{Giro,Tagesgeld,Sparbuch} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
% requires \usepgfplotslibrary{dateplot} ! \begin{tikzpicture} \begin{axis}[ date coordinates in=x, xtick=data, xticklabel style= {rotate=90,anchor=near xticklabel}, xticklabel=\day. \hour:\minute, date ZERO=2009-08-18,% <- improves precision! ] \addplot coordinates { (2009-08-18 09:00, 050) (2009-08-18 12:00, 100) (2009-08-18 15:00, 100) (2009-08-18 18:35, 100) (2009-08-18 21:30, 040) (2009-08-19, 020) (2009-08-19 3:00, 000) (2009-08-19 6:0, 035) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ xtick=\empty, ytick={-2,0.3,3,3.7,4.5}] \addplot+[smooth] coordinates { (-2,3) (-1.5,2) (-0.3,-0.2) (1,1.2) (2,2) (3,5)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[xtick=data,xmajorgrids] \addplot coordinates { (1,2) (2,5) (4,6.5) (6,8) (10,9) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{loglogaxis}[ title=A log plot with small axis range] \addplot coordinates { (10,1e-4) (17,8.3176e-05) (25,7.0794e-05) (50,5e-5) }; \end{loglogaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[minor tick num=1] \addplot {x^3}; \addplot {-20*x}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[minor tick num=3] \addplot {x^3}; \addplot {-20*x}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[minor x tick num=1, minor y tick num=3] \addplot {x^3}; \addplot {-20*x}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[minor xtick={-3,1},grid=minor] \addplot {x^3}; \addplot {-20*x}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[minor ytick=data] \addplot {x^2}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ xmin=0,xmax=3,ymin=0,ymax=15, extra y ticks={2.71828}, extra y tick labels={$e$}, extra x ticks={2.2}, extra x tick style={grid=major, tick label style={ rotate=90,anchor=east}}, extra x tick labels={Cut}, ] \addplot {exp(x)}; \addlegendentry{$e^x$} \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\pgfplotsset{every axis/.append style={width=5.3cm}} \begin{tikzpicture} \begin{loglogaxis}[ title=Explicitly Provided Limits, xtickten={1,2}, ytickten={-5,-6}] \addplot coordinates {(10,1e-5) (20,5e-6) (40,2.5e-6)}; \end{loglogaxis} \end{tikzpicture} \begin{tikzpicture} \begin{loglogaxis}[ title=With Extra Ticks, xtickten={1,2}, ytickten={-5,-6}, extra x ticks={20,40}, extra y ticks={5e-6,2.5e-6}] \addplot coordinates {(10,1e-5) (20,5e-6) (40,2.5e-6)}; \end{loglogaxis} \end{tikzpicture} \begin{tikzpicture} \begin{loglogaxis}[ title=With Extra Ticks; $10^e$ format, extra tick style={log identify minor tick positions=false}, xtickten={1,2}, ytickten={-5,-6}, extra x ticks={20,40}, extra y ticks={5e-6,2.5e-6}] \addplot coordinates {(10,1e-5) (20,5e-6) (40,2.5e-6)}; \end{loglogaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{semilogyaxis}[ samples=8, ytickten={-6,-4,...,4}, domain=0:10] \addplot {2^(-2*x + 6)}; \addlegendentry{$2^{-2x + 6}$} % or invoke gnuplot to generate coordinates: \addplot gnuplot[id=pow2] {2**(-1.5*x -3)}; \addlegendentry{$2^{-1.5x -3}$} \end{semilogyaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ xtick={-1.5,-1,...,1.5}, xticklabels={% $-1\frac 12$, $-1$, $-\frac 12$, $0$, $\frac 12$, $1$}, % note: \frac can be done automatically: % xticklabel style={/pgf/number format/frac}, ] \addplot[smooth,blue,mark=*] coordinates { (-1, 1) (-0.75, 0.5625) (-0.5, 0.25) (-0.25, 0.0625) (0, 0) (0.25, 0.0625) (0.5, 0.25) (0.75, 0.5625) (1, 1) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{semilogyaxis}[ ytickten={-2,-1,0,1,2}, yticklabels={$\frac{1}{100}$,% $\frac{1}{10}$,% 1,10,100}, ] \addplot {exp(x)}; \end{semilogyaxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{semilogyaxis}[ yticklabel style={/pgf/number format/fixed}, % changes tick labels to a number instead % of exponential notation: yticklabel={% \pgfmathfloatparsenumber{\tick}% \pgfmathfloatexp{\pgfmathresult}% \pgfmathprintnumber{\pgfmathresult}% }, ] \addplot {exp(x)}; \end{semilogyaxis} \end{tikzpicture}

[.tex] [.pdf]
% \usepackage{nicefrace}% required \begin{tikzpicture} \begin{axis}[ % x ticks explicitly formatted: xtick={0,1,0.5,0.25,0.75}, xticklabels={$0$,$1$,$\frac12$,$\frac14$,$\frac34$}, % y ticks automatically by some code fragment: ytick=data, yticklabel={% \scriptsize \ifdim\tick pt<0pt % a TeX \if -- see TeX Book \pgfmathparse{-10*\tick}% $-\nicefrac{\pgfmathprintnumber{\pgfmathresult}}{10}$% \else \ifdim\tick pt=0pt \else \pgfmathparse{10*\tick}% $\nicefrac{\pgfmathprintnumber{\pgfmathresult}}{10}$% \fi \fi }, % NOTE: this here does the same: % yticklabel style={/pgf/number format/.cd,frac, % frac TeX=\nicefrac,frac whole=false,frac denom=10}, ymajorgrids, title=A special Prewavelet, axis x line=center, axis y line=left, ] \addplot coordinates {(0,-1.2) (0.25,1.1) (0.5,-0.6) (0.75,0.1) (1,0)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[x tick label as interval] \addplot {3*x}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ ybar interval=0.9, x tick label as interval, xmin=2003,xmax=2030, ymin=0,ymax=140, xticklabel={ $\pgfmathprintnumber{\tick}$ -- $\pgfmathprintnumber{\nexttick}$}, xtick=data, x tick label style={ rotate=90,anchor=east, /pgf/number format/1000 sep=} ] \addplot[draw=blue,fill=blue!40!white] coordinates {(2003,40) (2005,100) (2006,15) (2010,90) (2020,120) (2030,3)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ xtick=data,ytick=data, xtick align=center] \addplot coordinates {(-3,0) (-2,0.1) (-1,-0.6) (0,1) (1,-0.6) (2,0.1) (3,0)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ xtick=data,ytick=data, ytick align=outside] \addplot coordinates {(-3,0) (-2,0.1) (-1,-0.6) (0,1) (1,-0.6) (2,0.1) (3,0)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ xtick=data, axis x line=center, xticklabels={,,}, ytick={-0.6,0,0.1,1}, yticklabels={ $-\frac{6}{10}$,, $\frac{1}{10}$,$1$}, ymajorgrids, axis y line=left, enlargelimits=0.05] \addplot coordinates {(-3,0) (-2,0.1) (-1,-0.6) (0,1) (1,-0.6) (2,0.1) (3,0)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[scaled ticks=true] \addplot coordinates { (20000,0.0005) (40000,0.0010) (60000,0.0020) }; \end{axis} \end{tikzpicture}%

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[scaled ticks=false] \addplot coordinates { (20000,0.0005) (40000,0.0010) (60000,0.0020) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[scaled ticks=base 10:3, /pgf/number format/sci subscript] \addplot coordinates {(-0.00001,2e12) (-0.00005,4e12) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ xtick={0,1.5708,...,10}, domain=0:2*pi, scaled x ticks={real:3.1415}, xtick scale label code/.code={$\cdot \pi$}] \addplot {sin(deg(x))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ scaled x ticks=real:2, scaled y ticks=real:3] \addplot {x^3}; \node[pin=135:{$(3,9)$}] at (axis cs:3,9) {}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ % warning: the '%' signs are necessary (?) scaled y ticks=manual:{$+65\,535$}{% \pgfmathparse{#1-65535}% }, yticklabel style={ /pgf/number format/fixed, /pgf/number format/precision=1}, ] \addplot coordinates { (0, 65535) (13, 65535) (14, 65536) (15, 65537) (30, 65537) }; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ title=\texttt{tick scale binop=\textbackslash cdot}] \addplot [mark=none,blue,samples=250, domain=0:5] {exp(10*x)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ title=\texttt{tick scale binop=\textbackslash times}, tick scale binop=\times] \addplot [mark=none,blue,samples=250, domain=0:5] {exp(10*x)}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{semilogyaxis}[log basis y=2,grid=major,samples at={-4,...,4}] \addplot {2^x}; \end{semilogyaxis} \end{tikzpicture} ~ \begin{tikzpicture} \begin{semilogyaxis}[log basis y=10,samples at={-4,...,4}] \addplot {2^x}; \end{semilogyaxis} \end{tikzpicture}

[.tex] [.pdf]
% requires \usepgfplotslibrary{patchplots} \begin{tikzpicture} \begin{axis}[ % tell pgfplots to "grab" the axis at its internal (0,0) coord: anchor=origin, % tell pgfplots to place its anchor at (0,0): % (This is actually the default and can be omitted) at={(0pt,0pt)}, % tell pgfplots to use the "natural" dimensions: disabledatascaling, % tell pgfplots to use the same unit vectors as tikz: x=1cm,y=1cm, % hide axis, ] \addplot[patch,patch type=coons, shader=interp,point meta=explicit] coordinates { (0,0) [0] % first corner (1,-1) [0] % bezier control point between (0) and (3) (4,0.7) [0] % bezier control point between (0) and (3) % (3,2) [1] % second corner (4,3.5) [1] % bezier control point between (3) and (6) (7,2) [1] % bezier control point between (3) and (6) % (7,1) [2] % third corner (6,0.6) [2] % bezier control point between (6) and (9) (4.5,-0.5) [2] % bezier control point between (6) and (9) % (5,-2) [3] % fourth corner (4,-2.5) [3] % bezier control point between (9) and (0) (-1,-2) [3] % bezier control point between (9) and (0) }; \end{axis} % this requires pgf 2.10 \begin{scope}[every node/.style={circle,inner sep=2pt,fill=black}] \node[pin=140:first] at (0,0) {}; \node[pin=second] at (3,2) {}; \node[pin=45:third] at (7,1) {}; \node[pin=0:fourth] at (5,-2) {}; \end{scope} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot+[data cs=polar,domain=0:360] (\x,1); \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis} \addplot+[data cs=polarrad,domain=0:2*pi] (\x,1); \end{axis} \end{tikzpicture}

[.tex] [.pdf]
% requires \usepgfplotslibrary{polar} \begin{tikzpicture} \begin{polaraxis} \addplot coordinates {(90,1) (180,1)}; \addplot+[data cs=cart] coordinates {(1,0) (0.5,0.5)}; \end{polaraxis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ enlargelimits=0.01, title style={yshift=5pt}, title=Scatter plot with $2250$ points] \addplot[blue, mark=*,only marks,mark options={scale=0.3}] file[skip first] {plotdata/pgfplots_scatterdata3.dat}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ enlarge x limits=0.03, title=Ornstein-Uhlenbeck sample ($13000$ time steps), xlabel=$t$] \addplot[blue] file {plotdata/ou.dat}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\begin{tikzpicture} \begin{axis}[ title=$120 \times 120$ Smooth Surface, xlabel=$x$, ylabel=$y$] \addplot3[surf,samples=120,shader=interp,domain=0:1] {sin(deg(8*pi*x))* exp(-20*(y-0.5)^2) + exp(-(x-0.5)^2*30 - (y-0.25)^2 - (x-0.5)*(y-0.25))}; \end{axis} \end{tikzpicture}

[.tex] [.pdf]
\pgfplotstabletypeset[sci zerofill]{ a b 5000 1.234e5 6000 1.631e5 7000 2.1013e5 9000 1000000 }

[.tex] [.pdf]
\pgfplotstabletypeset{pgfplotstable.example1.dat}

[.tex] [.pdf]
\pgfplotstableset{% global config, for example in the preamble % these columns//.style={} things define a style % which applies to only. columns/dof/.style={int detect,column type=r,column name=\textsc{Dof}}, columns/error1/.style={ sci,sci zerofill,sci sep align,precision=1,sci superscript, column name=$e_1$, }, columns/error2/.style={ sci,sci zerofill,sci sep align,precision=2,sci 10e, column name=$e_2$, }, columns/{grad(log(dof),log(error2))}/.style={ string replace={0}{}, % erase '0' column name={$\nabla e_2$}, dec sep align, }, columns/{quot(error1)}/.style={ string replace={0}{}, % erase '0' column name={$\frac{e_1^{(n)}}{e_1^{(n-1)}}$} }, empty cells with={--}, % replace empty cells with '--' every head row/.style={before row=\toprule,after row=\midrule}, every last row/.style={after row=\bottomrule} } \pgfplotstabletypeset[ % local config, applies only for this table 1000 sep={\,}, columns/info/.style={ fixed,fixed zerofill,precision=1,showpos, column type=r, } ] {pgfplotstable.example1.dat}

[.tex] [.pdf]
\pgfplotstabletypeset [col sep=&,row sep=\\,sci zerofill] { level & dof & error \\ 1 & 4 & 2.50000000e-01 \\ 2 & 16 & 6.25000000e-02 \\ 3 & 64 & 1.56250000e-02 \\ 4 & 256 & 3.90625000e-03 \\ 5 & 1024 & 9.76562500e-04 \\ 6 & 4096 & 2.44140625e-04 \\ 7 & 16384 & 6.10351562e-05 \\ 8 & 65536 & 1.52587891e-05 \\ 9 & 262144 & 3.81469727e-06 \\ 10 & 1048576 &9.53674316e-07 \\ }

[.tex] [.pdf]
\pgfplotstableread{pgfplotstable.example1.dat}\loadedtable \pgfplotstabletypeset[columns={dof,error1}]\loadedtable \hspace{2cm} \pgfplotstabletypeset[columns={dof,error2}]\loadedtable
% Alternative: inline table data: \pgfplotstableread{ level dof error1 error2 info grad(log(dof),log(error2)) quot(error1) 1 4 2.50000000e-01 7.57858283e-01 48 0 0 2 16 6.25000000e-02 5.00000000e-01 25 -3.00000000e-01 4 3 64 1.56250000e-02 2.87174589e-01 41 -3.99999999e-01 4 4 256 3.90625000e-03 1.43587294e-01 8 -5.00000003e-01 4 5 1024 9.76562500e-04 4.41941738e-02 22 -8.49999999e-01 4 6 4096 2.44140625e-04 1.69802322e-02 46 -6.90000001e-01 4 7 16384 6.10351562e-05 8.20091159e-03 40 -5.24999999e-01 4 8 65536 1.52587891e-05 3.90625000e-03 48 -5.35000000e-01 3.99999999e+00 9 262144 3.81469727e-06 1.95312500e-03 33 -5.00000000e-01 4.00000001e+00 10 1048576 9.53674316e-07 9.76562500e-04 2 -5.00000000e-01 4.00000001e+00 }\loadedtable % can be used as above: \pgfplotstabletypeset[columns={dof,error1}]\loadedtable \hspace{2cm} \pgfplotstabletypeset[columns={dof,error2}]\loadedtable

[.tex] [.pdf]
\pgfplotstabletypeset[col sep=comma]{pgfplotstable.example1.csv}

[.tex] [.pdf]
\pgfplotstabletypeset [col sep=comma,ignore chars={(,),\ ,\#}] {pgfplotstable.example5.dat}

[.tex] [.pdf]
\pgfplotstabletypeset[comment chars=!]{ ! Some comments 1 0 2 -10 ! another comment line 3 0 }

[.tex] [.pdf]
\pgfplotstabletypeset[skip first n=4]{%<- this '%' is important. Otherwise, the %newline here would delimit an (empty) row. XYZ Format, Version 1.234 Date 2010-09-01 @author Mustermann A B C 1 2 3 4 5 6 }

[.tex] [.pdf]
\pgfplotstabletypeset[columns={dof,level,[index]4}]{pgfplotstable.example1.dat}

[.tex] [.pdf]
% in preamble: \pgfplotstableset{ alias/newname/.initial=b, } % in document: \pgfplotstabletypeset[ columns={a,newname},% access to `newname' is the same as to `b' ]{ a b 1 2 3 4 5 6 }%

[.tex] [.pdf]
\pgfplotstabletypeset[ columns/error1/.style={ column name=$L_2$, sci,sci zerofill,sci subscript, precision=3}, columns/error2/.style={ column name=$A$, sci,sci zerofill,sci subscript, precision=2}, columns/dof/.style={ int detect, column name=\textsc{Dof} } ] {pgfplotstable.example1.dat}

[.tex] [.pdf]
\pgfplotstabletypeset[ columns={dof,error1,{grad(log(dof),log(error2))}}, columns/error1/.style={ column name=$L_2$, sci,sci zerofill,sci subscript, precision=3}, columns/dof/.style={ int detect, column name=\textsc{Dof}}, columns/{grad(log(dof),log(error2))}/.style={ column name=slopes $L_2$, fixed,fixed zerofill, precision=1} ] {pgfplotstable.example1.dat}

[.tex] [.pdf]
\pgfplotstabletypeset[ columns={dof,error1,info}, column type/.add={|}{}% results in '|c' ] {pgfplotstable.example1.dat}

[.tex] [.pdf]
% requires \usepackage{array} \pgfplotstabletypeset[ columns={dof,error1,error2,info,{grad(log(dof),log(error2))}}, columns/error1/.style={dec sep align}, columns/error2/.style={sci,sci subscript,sci zerofill,dec sep align}, columns/info/.style={fixed,dec sep align}, columns/{grad(log(dof),log(error2))}/.style={fixed,dec sep align} ] {pgfplotstable.example1.dat}

[.tex] [.pdf]
% requires \usepackage{array} \pgfplotstabletypeset[ use comma, columns={dof,error1,error2,info,{grad(log(dof),log(error2))}}, columns/error1/.style={dec sep align}, columns/error2/.style={sci,sci subscript,sci zerofill,dec sep align}, columns/info/.style={fixed,dec sep align}, columns/{grad(log(dof),log(error2))}/.style={fixed,dec sep align} ] {pgfplotstable.example1.dat}

[.tex] [.pdf]
% requires \usepackage{array} \pgfplotstabletypeset[ use comma, columns={dof,error1,error2,info,{grad(log(dof),log(error2))}}, columns/error1/.style={dec sep align,sci zerofill}, columns/error2/.style={sci,sci subscript,sci zerofill,dec sep align}, columns/info/.style={fixed,dec sep align}, columns/{grad(log(dof),log(error2))}/.style={fixed,dec sep align,fixed zerofill} ] {pgfplotstable.example1.dat}

[.tex] [.pdf]
\pgfplotstabletypeset[ sort,sort key=error2, columns={dof,error1,error2}, columns/error1/.style={sci,sci subscript,sci zerofill,dec sep align}, columns/error2/.style={sci,sci subscript,sci zerofill,dec sep align}, ] {pgfplotstable.example1.dat}

[.tex] [.pdf]
\pgfplotstabletypeset[ every head row/.style={before row=\hline,after row=\hline\hline}, every last row/.style={after row=\hline}, every first column/.style={ column type/.add={|}{} }, every last column/.style={ column type/.add={}{|} }] {pgfplotstable.example1.dat}

[.tex] [.pdf]
% requires \usepackage{colortbl} \pgfplotstabletypeset[ every even column/.style={ column type/.add={>{\columncolor[gray]{.8}}}{} }] {pgfplotstable.example1.dat}

[.tex] [.pdf]
% \usepackage{booktabs} \pgfplotstabletypeset[ column type=l, every head row/.style={ before row={% \toprule & \multicolumn{2}{c}{Singular} & \multicolumn{2}{c}{Plural}\\ }, after row=\midrule, }, every last row/.style={ after row=\bottomrule}, columns/person/.style ={column name=}, columns/singGaeilge/.style ={column name=Gaeilge}, columns/pluralGaeilge/.style={column name=Gaeilge}, columns/singEnglish/.style ={column name=English}, columns/pluralEnglish/.style={column name=English}, col sep=&,row sep=\\, string type, ]{ person & singEnglish & singGaeilge & pluralEnglish & pluralGaeilge\\ 1st & at me & agam & at us & againn\\ 2st & at you & agat & at you & agaibh\\ 3st & at him & aige & at them & acu\\ & at her & aici & &\\ }

[.tex] [.pdf]
\newcolumntype{C}{>{\centering\arraybackslash}p{6mm}}% a centered fixed-width-column \pgfplotstabletypeset[ col sep=&, row sep=\\, every head row/.style={ % as in the previous example, this patches the first row: before row={ \hline \rowcolor{lightgray} \multicolumn{3}{|>{\columncolor{lightgray}}c|}{Quantenzahlen} & Term--\\ \rowcolor{lightgray} }, after row=\hline, }, every last row/.style={ after row=\hline}, % define column-specific styles: columns/n/.style={column type=|C,column name=$n$}, columns/l/.style={column type=|C,column name=$\ell$}, columns/lambda/.style={column type=|C,column name=$\lambda$}, columns/text/.style={column type=|c|,column name=bezeichnung, string type % <-it contains formatted data }, ] { n & l & lambda & text\\ 1 & 0 & 0 & $1 s\sigma$ \\ 2 & 0 & 0 & $2 s\sigma$ \\ 2 & 1 & 0 & $2 p\sigma$ \\ 2 & 1 & 1 & $2 p \pi $\\ 3 & 2 & 0 & $3 d\sigma$ \\ 3 & 2 & 2 & $3 d\delta$ \\ }

[.tex] [.pdf]
% requires \usepackage{booktabs} \pgfplotstabletypeset[ every head row/.style={ before row=\toprule,after row=\midrule}, every last row/.style={ after row=\bottomrule}, ] {pgfplotstable.example1.dat}

[.tex] [.pdf]
% requires \usepackage{booktabs,colortbl} \pgfplotstabletypeset[ every even row/.style={ before row={\rowcolor[gray]{0.9}}}, every head row/.style={ before row=\toprule,after row=\midrule}, every last row/.style={ after row=\bottomrule}, ] {pgfplotstable.example1.dat}

[.tex] [.pdf]
\pgfplotstabletypeset[ % suppress the leading row 'col1 col2 col3': every head row/.style={output empty row}, col sep=comma, columns/col1/.style={string type,column type=r}, columns/col2/.style={string type,column type=l}, columns/col3/.style={string type,column type=l}, ] { col1,col2,col3 Col A,B,C The first column,E,F }

[.tex] [.pdf]
\pgfplotstabletypeset[ every nth row={3}{before row=\midrule}, every head row/.style={ before row=\toprule,after row=\midrule}, every last row/.style={ after row=\bottomrule}, ]{ a b 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 }

[.tex] [.pdf]
\pgfplotstabletypeset[ every nth row={3[+1]}{before row=\midrule}, ]{ a b 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 }

[.tex] [.pdf]
\pgfplotstabletypeset[ col sep=&,row sep=\\]{ colA & colB & colC \\ 11 & 12 & 13 \\ 21 & 22 & 23 \\ }

[.tex] [.pdf]
\pgfplotstabletypeset[ every row 1 column 2/.style={/pgf/number format/sci}, every row 0 column 0/.style={postproc cell content/.style={@cell content=\textbf{##1}}}, col sep=&,row sep=\\]{ colA & colB & colC \\ 11 & 12 & 13 \\ 21 & 22 & 23 \\ }

[.tex] [.pdf]
\pgfplotstabletypeset[ every row 1 column colB/.style={string replace*={2}{4}}, every row 0 column colA/.style={preproc/expr={##1*8}}, col sep=&,row sep=\\]{ colA & colB & colC \\ 11 & 12 & 13 \\ 21 & 22 & 23 \\ }

[.tex] [.pdf]
\pgfplotstabletypeset[ columns={dof,error1}, outfile=pgfplotstable.example1.out.tex] {pgfplotstable.example1.dat}

[.tex] [.pdf]
\pgfplotstabletypeset[ begin table={}, end table={
}, typeset cell/.style={ /pgfplots/table/@cell content={#1} }, before row=,after row=, skip coltypes, typeset=false, verbatim,% configures number printer TeX comment=, columns={level,dof,error1}, outfile=pgfplotstable.example1.out.html, ]{pgfplotstable.example1.dat} \lstinputlisting [basicstyle=\ttfamily\footnotesize] {pgfplotstable.example1.out.html}

[.tex] [.pdf]
% An example how to use % \usepackage{multirow} and % \usepackage{booktabs}: \pgfplotstabletypeset[ columns/Z/.style={ column name={}, assign cell content/.code={% use \multirow for Z column: \ifnum\pgfplotstablerow=0 \pgfkeyssetvalue{/pgfplots/table/@cell content} {\multirow{4}{*}{##1}}% \else \pgfkeyssetvalue{/pgfplots/table/@cell content}{}% \fi }, }, % use \booktabs as well (compare examples above): every head row/.style={before row=\toprule,after row=\midrule}, every last row/.style={after row=\bottomrule}, row sep=\\,col sep=&, outfile=pgfplotstable.multirow.out,% write it to file ]{% here: inline data in tabular format: Z & a & b \\ data & 1 & 2 \\ & 3 & 4 \\ & 5 & 6 \\ & 7 & 8 \\ } % ... and show the generated file: \lstinputlisting[basicstyle=\footnotesize\ttfamily]{pgfplotstable.multirow.out}

[.tex] [.pdf]
% Requires % \usepackage{pgfcalendar} \pgfplotstableset{columns={date,account1}} % plotdata/accounts.dat contains: % % date account1 account2 account3 % 2008-01-03 60 1200 400 % 2008-02-06 120 1600 410 % 2008-03-15 -10 1600 410 % 2008-04-01 1800 500 410 % 2008-05-20 2300 500 410 % 2008-06-15 800 1920 410 % Show the contents in `string type': \pgfplotstabletypeset[ columns/date/.style={string type} ]{plotdata/accounts.dat} \hspace{1cm} % Show the contents in `date type': \pgfplotstabletypeset[ columns/date/.style={date type={\monthname\ \year}} ]{plotdata/accounts.dat}

[.tex] [.pdf]
\pgfplotstabletypeset[columns={level,dof}] {pgfplotstable.example1.dat} \pgfplotstabletypeset[ columns={level,dof}, columns/level/.style={string replace={A}{B}}, % does nothing because there is no cell 'A' columns/dof/.style={string replace={256}{-42}}] % replace cell '256' with '-42' {pgfplotstable.example1.dat}

[.tex] [.pdf]
\pgfplotstabletypeset[ string replace*={2}{6}, col sep=&,row sep=\\]{ colA & colB & colC \\ 11 & 12 & 13 \\ 21 & 22 & 23 \\ }

[.tex] [.pdf]
\pgfplotstabletypeset[ columns={level}, columns/level/.style={ column name={$2\cdot \text{level}+4$}, preproc/expr={2*##1 + 4} } ] {pgfplotstable.example1.dat}

[.tex] [.pdf]
\pgfplotstableset{ columns={error1,sqrterror1}, create on use/sqrterror1/.style={create col/copy=error1}, columns/error1/.style={column name=$\epsilon$}, columns/sqrterror1/.style={sqrt,column name=$\sqrt \epsilon$}, sci,sci 10e,precision=3,sci zerofill } \pgfplotstabletypeset{pgfplotstable.example1.dat}

[.tex] [.pdf]
\pgfplotstableset{ columns={dof,error2,slopes2}, columns/error2/.style={sci,sci zerofill}, columns/slopes2/.style={dec sep align,empty cells with={\ensuremath{-}}}, create on use/slopes2/.style= {create col/gradient loglog={dof}{error2}}} \pgfplotstabletypeset{pgfplotstable.example1.dat} \pgfplotstabletypeset[columns/slopes2/.append style={multiply -1}] {pgfplotstable.example1.dat}

[.tex] [.pdf]
% requires \usepackage{booktabs} \pgfplotstabletypeset[ every head row/.style={ before row=\toprule,after row=\midrule}, every last row/.style={ after row=\bottomrule}, row predicate/.code={% \ifnum#1>4\relax \ifnum#1<8\relax \pgfplotstableuserowfalse \fi \fi} ] {pgfplotstable.example1.dat}

[.tex] [.pdf]
% requires \usepackage{booktabs} \pgfplotstabletypeset[ every head row/.style={ before row=\toprule,after row=\midrule}, every last row/.style={ after row=\bottomrule}, skip rows between index={2}{4}, skip rows between index={7}{9} ] {pgfplotstable.example1.dat}

[.tex] [.pdf]
% requires \usepackage{booktabs} \pgfplotstableset{ every head row/.style={before row=\toprule,after row=\midrule}, every last row/.style={after row=\bottomrule}} \pgfplotstabletypeset[string type]{pgfplotstable.example2.dat}% ~ \pgfplotstabletypeset[ columns={A,B,A,B}, display columns/0/.style={select equal part entry of={0}{2},string type},% first part of `A' display columns/1/.style={select equal part entry of={0}{2},string type},% first part of `B' display columns/2/.style={select equal part entry of={1}{2},string type},% second part of `A' display columns/3/.style={select equal part entry of={1}{2},string type},% second part of `B' ] {pgfplotstable.example2.dat}

[.tex] [.pdf]
% requires \usepackage{eurosym} \pgfplotstabletypeset[ column type=r, columns={dof,info}, columns/info/.style={ % stupid example for multiple postprocessors: postproc cell content/.append style={ /pgfplots/table/@cell content/.add={$\bf}{$}, }, postproc cell content/.append style={ /pgfplots/table/@cell content/.add={}{\EUR{}}, } }] {pgfplotstable.example1.dat}

[.tex] [.pdf]
\pgfplotstableset{ create on use/slopes1/.style= {create col/gradient loglog={dof}{error1}}} \pgfplotstabletypeset[ columns={dof,error1,slopes1}, columns/error1/.style={sci,sci zerofill}, columns/slopes1/.style={ postproc cell content/.append code={% \ifnum\pgfplotstablerow=0 \pgfkeyssetvalue{/pgfplots/table/@cell content}{\ensuremath{-}}% \fi }% }] {pgfplotstable.example1.dat}

[.tex] [.pdf]
% Requires % \usepackage{pgfcalendar} % plotdata/accounts.dat contains: % % date account1 account2 account3 % 2008-01-03 60 1200 400 % 2008-02-06 120 1600 410 % 2008-03-15 -10 1600 410 % 2008-04-01 1800 500 410 % 2008-05-20 2300 500 410 % 2008-06-15 800 1920 410 \pgfplotstabletypeset[ columns={date,account1}, column type=r, columns/date/.style={date type={\monthname\ \year}}, columns/account1/.style={fonts by sign={}{\color{red}}} ] {plotdata/accounts.dat}

[.tex] [.pdf]
% this key setting could be provided in the document's preamble: \pgfplotstableset{ % define how the 'new' column shall be filled: create on use/new/.style={create col/set list={4,5,6,7,...,10}}} % create a new table with 11 rows and column 'new': \pgfplotstablenew[columns={new}]{11}\loadedtable % show it: \pgfplotstabletypeset[empty cells with={---}]\loadedtable

[.tex] [.pdf]
% create a new table with 11 rows and column 'new': \pgfplotstablenew[ % define how the 'new' column shall be filled: create on use/new/.style={create col/expr={factorial(15+\pgfplotstablerow)}}, columns={new}] {11} \loadedtable % show it: \pgfplotstabletypeset\loadedtable

[.tex] [.pdf]
\pgfplotstableread{pgfplotstable.example1.dat}\loadedtable \pgfplotstablecreatecol[ create col/assign/.code={% \getthisrow{level}\entry \getnextrow{level}\nextentry \edef\entry{thisrow=\entry; nextrow=\nextentry. (\#\pgfplotstablerow/\pgfplotstablerows)}% \pgfkeyslet{/pgfplots/table/create col/next content}\entry }] {new}\loadedtable \pgfplotstabletypeset[ column type=l, columns={level,new}, columns/new/.style={string type} ]\loadedtable

[.tex] [.pdf]
% requires \usepackage{array} \pgfplotstableset{% could be used in preamble create on use/quot1/.style= {create col/quotient={error1}}} \pgfplotstabletypeset[ columns={error1,quot1}, columns/error1/.style={sci,sci zerofill}, columns/quot1/.style={dec sep align}] {pgfplotstable.example1.dat}

[.tex] [.pdf]
\pgfplotstableset{ create on use/my new col/.style={create col/set={--empty--}}, columns/my new col/.style={string type} } \pgfplotstabletypeset[ columns={level,my new col}, ]{pgfplotstable.example1.dat}

[.tex] [.pdf]
\pgfplotstableset{ create on use/my new col/.style={ create col/set list={A,B,C,4,50,55,...,100}}, columns/my new col/.style={string type} } \pgfplotstabletypeset[ columns={level,my new col}, ]{pgfplotstable.example1.dat}

[.tex] [.pdf]
\pgfplotstableset{ create on use/new/.style={create col/copy={level}} } \pgfplotstabletypeset[ columns={level,new}, columns/new/.style={column name=Copy of level} ]{pgfplotstable.example1.dat}

[.tex] [.pdf]
\pgfplotstableset{ create on use/new/.style={ create col/expr={\thisrow{level}*2}} } \pgfplotstabletypeset[ columns={level,new}, columns/new/.style={column name=$2\cdot $level} ]{pgfplotstable.example1.dat}

[.tex] [.pdf]
\pgfplotstableset{ create on use/new/.style={ create col/expr={\pgfmathaccuma + \thisrow{level}}}, create on use/new2/.style={ create col/expr accum={\pgfmathaccuma * \thisrow{level}}{1}%<- start with `1' } } \pgfplotstabletypeset[ columns={level,new,new2}, columns/new/.style={column name=$\sum$level}, columns/new2/.style={column name=$\prod$level} ]{pgfplotstable.example1.dat}

[.tex] [.pdf]
% requires \usepackage{array} \pgfplotstableset{% configuration, for example, in preamble: create on use/quot1/.style={create col/quotient=error1}, create on use/quot2/.style={create col/quotient=error2}, columns={error1,error2,quot1,quot2}, % % display styles: columns/error1/.style={sci,sci zerofill}, columns/error2/.style={sci,sci zerofill}, columns/quot1/.style={dec sep align}, columns/quot2/.style={dec sep align} } \pgfplotstabletypeset{pgfplotstable.example1.dat}

[.tex] [.pdf]
% requires \usepackage{array} \pgfplotstabletypeset[% here, configuration options apply only to this single statement: create on use/rate1/.style={create col/dyadic refinement rate={error1}}, create on use/rate2/.style={create col/dyadic refinement rate={error2}}, columns={error1,error2,rate1,rate2}, columns/error1/.style={sci,sci zerofill}, columns/error2/.style={sci,sci zerofill}, columns/rate1/.style={dec sep align}, columns/rate2/.style={dec sep align}] {pgfplotstable.example1.dat}

[.tex] [.pdf]
% requires \usepackage{array} \pgfplotstableset{% configuration, for example in preamble: create on use/slopes1/.style={create col/gradient loglog={dof}{error1}}, create on use/slopes2/.style={create col/gradient loglog={dof}{error2}}, columns={dof,error1,error2,slopes1,slopes2}, % display styles: columns/dof/.style={int detect}, columns/error1/.style={sci,sci zerofill}, columns/error2/.style={sci,sci zerofill}, columns/slopes1/.style={dec sep align}, columns/slopes2/.style={dec sep align} } \pgfplotstabletypeset{pgfplotstable.example1.dat}

[.tex] [.pdf]
% requires \usepackage{array} \pgfplotstableset{% configuration, for example in preamble: create on use/slopes1/.style={create col/gradient semilogy={level}{error1}}, columns={level,error1,slopes1}, % display styles: columns/level/.style={int detect}, columns/error1/.style={sci,sci zerofill,sci subscript}, columns/slopes1/.style={dec sep align} } \pgfplotstabletypeset{pgfplotstable.example1.dat}

[.tex] [.pdf]
% load table from somewhere: \pgfplotstableread{ x y 1 1 2 4 3 9 4 16 5 25 6 36 }\loadedtbl % create the `regression' column: \pgfplotstablecreatecol[linear regression] {regression} {\loadedtbl} % store slope \xdef\slope{\pgfplotstableregressiona} \pgfplotstabletypeset\loadedtbl\\ The slope is `\slope'.

[.tex] [.pdf]
\pgfplotstablenew[ create on use/cut/.style={create col/function graph cut y= {2.5e-4} % search for fixed L2 = 2.5e-4 {x=Basis,y=L2,ymode=log,xmode=log} % double log, each function is L2(Basis) % now, provide each single function f_i(Basis): {{table=plotdata/newexperiment1.dat},{table=plotdata/newexperiment2.dat}} }, columns={cut}] {2} \loadedtable % Show the data: \pgfplotstabletypeset{\loadedtable} \begin{tikzpicture} \begin{loglogaxis} \addplot table[x=Basis,y=L2] {plotdata/newexperiment1.dat}; \addplot table[x=Basis,y=L2] {plotdata/newexperiment2.dat}; \draw[blue!30!white] (axis cs:1,2.5e-4) -- (axis cs:1e5,2.5e-4); \node[pin=-90:{$x=53.66$}] at (axis cs:53.66,2.5e-4) {}; \node[pin=45:{$x=601.83$}] at (axis cs:601.83,2.5e-4) {}; \end{loglogaxis} \end{tikzpicture}

[.tex] [.pdf]
\pgfplotstablenew[ % same as above... create on use/cut/.style={create col/function graph cut y= {2.5e-4}% search for fixed L2 = 2.5e-4 {x=Basis,y=L2,ymode=log,xmode=log, foreach={\i in {1,2}}{plotdata/newexperiment\i.dat}}% {}% just leave this empty. }, columns={cut}] {2} \loadedtable % Show the data: \pgfplotstabletypeset{\loadedtable}

[.tex] [.pdf]
\pgfplotstableread{pgfplotstable.example1.dat}\loadedtable \pgfplotstablemodifyeachcolumnelement{error1}\of\loadedtable\as\cell{% \edef\cell{\#\pgfplotstablerow: \cell}% } \pgfplotstabletypeset[columns=error1,string type]{\loadedtable}

[.tex] [.pdf]
\pgfplotstabletypeset[string type]{pgfplotstable.example3.dat}

[.tex] [.pdf]
\pgfplotstabletranspose\loadedtable{pgfplotstable.example3.dat} \pgfplotstabletypeset[string type]\loadedtable

[.tex] [.pdf]
\pgfplotstabletranspose[colnames from=c]\loadedtable{pgfplotstable.example3.dat} \pgfplotstabletypeset[string type]\loadedtable

[.tex] [.pdf]
\pgfplotstabletranspose[input colnames to=Input]\loadedtable{pgfplotstable.example3.dat} \pgfplotstabletypeset[string type]\loadedtable

[.tex] [.pdf]
\pgfplotstabletranspose[input colnames to=]\loadedtable{pgfplotstable.example3.dat} \pgfplotstabletypeset[string type]\loadedtable

[.tex] [.pdf]
\pgfplotstabletranspose[columns={a,b}]\loadedtable{pgfplotstable.example3.dat} \pgfplotstabletypeset[string type]\loadedtable

[.tex] [.pdf]
\pgfplotstablesort\result{% a b c 19 2 [a] -6 -14 [b] 4 -14 [c] -11 -9 [d] 11 14 [e] -9 -9 [f] 1 13 [g] 8 -10 [h] 16 18 [i] 19 -6 [j] } \pgfplotstabletypeset[columns/c/.style={string type}]{\result}%

[.tex] [.pdf]
\pgfplotstablesort[sort cmp=string <]\result{% 'Header' is the column name: Header the quick brown fox jumps over the lazy dog } \pgfplotstabletypeset[string type]{\result}%